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In the previous chapter, we have seen that the pragmatic-normative 
understanding of open reason relations from Chapters One to Three 
is isomorphic to the semantic-representationalist understanding of open 
reason relations in terms of truth-makers and falsity-makers. In particular, 
if collections of assertions and denials of atomic sentences are normatively 
ruled out just in case all fusions of truth-makers of the asserted sentences 
and falsity-makers of the denied sentences are alethically ruled out, then 
the pragmatic-normative theory of consequence among sentences from 
Chapter Three coincides with the semantic-representationalist theory of 
consequence among worldly propositions from Chapter Four. That is, 
the consequence relation among sentences defined in pragmatic-normative 
terms and the consequence relation among worldly propositions, that 
are represented by these sentences, defined i n semantic-representationa-
list terms are isomorphic under the mapping of representations to 
representanda. We thus have a common formal structure of open reason 
relations that can be explicated in a pragmatic-normative and also in 
a semantic-representationalist metavocabulary. We called the roles in 
this formal structure that are shared between sentences and worldly 
propositions their “rational forms.”

In this chapter, we present a theory of these rational forms in themselves 
and, hence, not as they occur in discursive acts or in worldly states. 
We thereby abstract away from the different kinds of matter in which 
rational forms can occur. We present an intrinsic metavocabulary of reason 
relations, a metavocabulary that allows us to talk about the content 
of something as its role in reason relations: its role in implications. In 
other words, we present an account that does not appeal to anything 
like pragmatic-normative or semantic-representationalist ideas to explain 
reason relations, but provides rather a metalinguistic codification and 
explication of reason relations that appeals only to the reason relations
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of the base vocabularies themselves. We call this theory “implication-
space semantics.”1 From the perspective of implication-space semantics, the
pragmatic-normative and the semantic-representationalist theories from
previous chapters can be seen as accounts of two particular ways in which
rational forms, that is, implicational roles, can be realized.

The chapter is organized as follows. In the first section, we introduce
implication-space semantics. We then explain how the pragmatic-
normative account in terms of the sequent calculus NMMS and the seman-
tic-representationalist account in terms of truth-makers can be interpreted
in implication-space semantics. In the third section, we explain how
implication-space semantics reveals the basic structure of reason relations
to be that of a monoid defined on a set of pairs, together with a subset
of the monoid set. Section 5.4 shows how implication-space semantics
can capture non-contractive reason relations and multiplicative additive
linear logic. We then present, in Section 5.5, an account of relations among
implicational roles, which allows us to recover logics like the logic of
paradox (LP) and strong Kleene logic (K3). Section 5.6 concludes.

5.1 Formulating Implication-Space Semantics

The extrinsic metavocabularies of norms governing acceptance and
rejection and of states making sentences true or false, which were our
topics in the previous two chapters, appealed to something outside of
reason relations themselves in order to explain what it means for things
to stand in reason relations. We now abstract away from such appeals to
external resources and formulate a theory that explicates reason relations
merely in terms of the materials already available in reason relations
themselves. The theory provides a notion of conceptual contents as roles
within reason relations. These conceptual roles are the rational forms
shared by contentful sentences and worldly propositions, which we already
encountered in the previous chapter.

5.1.1 Implicational Roles

In the previous chapter, we introduced the idea of rational form as the
modal role that something plays in relations of exclusion. These relations
of exclusion are the generic form of reason relations, of implications
(including incompatibilities).2 Hence, in order to focus on rational forms,
we must look directly at roles that things play in reason relations or
implications. We will call these roles “implicational roles.” We therefore
begin by making the notion of an implicational role precise.

Although we want to focus on rational forms and, hence, on
implicational roles in abstraction from anything that embodies these forms
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or roles, we still need some placeholders for bearers of roles, which we will
simply call “bearers.” In the two previous chapters, we saw that sentences
and worldly propositions can serve as bearers of implicational roles. In this
chapter, we abstract away from any particular bearers and focus merely on
the roles they play in implications. Our general strategy is to define roles
as equivalence classes of bearers or implications among bearers. We will
provide a general way to abstract implicational roles from any given set of
bearers standing in implication relations, where these implication relations
can, crucially, be structurally open reason relations.

We will start by considering an otherwise unspecified set of bearers of
implicational roles, and the set of all possible implications among them,
which we call “candidate implications.” We call the set of all candidate
implications the “implication space” of a given set of bearers.

Definition 61 (Role bearers and implication space). The members of a non-
empty set B are bearers of implicational roles. And the set, S, of all the
pairs of subsets of B is the bearer implication space, which contains all the
candidate implications among the bearers, so S = P(B)×P(B).

We call the first set in a candidate implication its “premises” and the
second its “conclusions.” Some candidate implications hold and others do
not hold, that is, some candidate implications are good implications and
some are not. Thus, the actual implications or good implications are a
subset of the implication space. We use “implication frame” for a pair of
the set of bearers and a subset of good implications.

Definition 62 (Implication and implication frames). Implication is a
relation between sets of bearers, I ⊆ S. An implication frame is a pair
⟨B, I⟩ of set of bearers, B, and implications among sets of them, I ⊆ S.

The idea behind this definition is that an open reason relation holds
among sets of bearers and that Γ ∼ ∆ is part of this reason relation just in
case ⟨Γ, ∆⟩ ∈ I. We will sometimes call the minimal element, ⟨∅, ∅⟩, of the
implication space e, and we denote the maximal element ⟨B, B⟩ by ⋆. We
assume that e ̸∈ I but ⋆ ∈ I.

We want to define the roles that bearers play in implication relations,
and these roles should be such that it is possible for distinct bearers to play
the same role. To a first approximation, we can think of an implicational
role as represented by the collection of bearers that all play the same role.
This suggests that we start by asking when two bearers play the same role.
Our strategy in this section is to first define an equivalence relation between
bearers, and indeed implications and sets thereof, which holds just in case
the equivalent items play the same implicational role. And we then define
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implicational roles as equivalence classes with respect to this equivalence
relation.

In order to define this equivalence relation, consider that, intuitively,
the implicational role of a bearer has two parts: firstly, the role that the
bearer plays as a premise in implications and, secondly, the role that it
plays as a conclusion in implications. We can think of the role that a bearer
plays as a premise or a conclusion as the contribution that it makes to the
goodness of an implication, as a premise or as a conclusion, respectively.
In other words, if we have a bearer, ϕ, of an implicational role, then the
role of ϕ as a premise in implications is fully settled by for exactly which
sets X and Y we have ⟨X ∪ {ϕ}, Y⟩ ∈ I, that is, by exactly which good
implications the bearer figures in as a premise. And the role of ϕ as a
conclusion in implications is fully settled by for exactly which sets X and
Y we have ⟨X, Y ∪ {ϕ}⟩ ∈ I, that is, by exactly which good implications
the bearer figures in as a conclusion. We call the first part of this role of a
bearer its “premisory role” and the second part its “conclusory role.” The
premisory role of a bearer tells us what contribution the bearer makes to
good implications as a premise. And the conclusory role of a bearer tells us
what contribution the bearer makes to good implications as a conclusion.

Considering premisory and conclusory roles naturally leads to a
broadening of our focus from roles of particular bearers to roles of whole
implications. To see this, it is helpful to recall the definition of the range
of subjunctive robustness from Chapter Three. The idea behind ranges of
subjunctive robustness is that, especially in a nonmonotonic setting, it is
interesting to consider which additions to an implication do not defeat the
implication, if the implication is already good, or turn the implication into
a good implication, if it is not already good. If we generalize that definition
from∼ to I and also extend the definition to sets of candidate implications,
the result is the following:

Definition 63 (Range of subjunctive robustness, RSR(· )). Given ⟨Γ, ∆⟩ ∈
S, its range of subjunctive robustness, RSR(⟨Γ, ∆⟩), is the set of pairs,
⟨X, Y⟩, such that ⟨Γ ∪ X, ∆ ∪ Y⟩ ∈ I; that is, RSR(⟨Γ, ∆⟩) = {⟨X, Y⟩ ∈
S | ⟨Γ ∪ X, ∆ ∪ Y⟩ ∈ I}. The range of subjunctive robustness of a set
of candidate implications is the intersection of the ranges of subjunctive
robustness of the members; that is, if H ⊆ S, then RSR(H) = {⟨X, Y⟩ |
∀ ⟨Γ, ∆⟩ ∈ H (⟨Γ ∪ X, ∆ ∪ Y⟩ ∈ I)}.

Notice that the set of pairs ⟨X, Y⟩ such that ⟨X ∪ {ϕ}, Y⟩ ∈ I is the range
of subjunctive robustness of ⟨{ϕ}, ∅⟩. And the set of pairs ⟨X, Y⟩ such
that ⟨X, Y ∪ {ϕ}⟩ ∈ I is the range of subjunctive robustness of ⟨∅, {ϕ}⟩.3
So it follows from what we said above that these ranges of subjunctive
robustness fully determine the premisory and conclusory roles of a given
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bearer ϕ. This suggests that everything with the same range of subjunctive
robustness, as a premise and as a conclusion, plays the same implicational
role as the given bearer. Thus, if the two bearers ϕ and ψ are such that
the ranges of subjunctive robustness of their occurrences as a premise
are identical, that is, if RSR ⟨{ϕ}, ∅⟩ = RSR ⟨{ψ}, ∅⟩,4 then ϕ and ψ play
the same premisory role. And if the ranges of subjunctive robustness of
their occurrences as a conclusion are identical, that is, if RSR ⟨∅, {ϕ}⟩ =
RSR ⟨∅, {ψ}⟩, then ϕ and ψ play the same conclusory role.

To formulate this idea in a rigorous way, let us define a notion of
equivalence among sets of candidate implications in terms of their ranges of
subjunctive robustness. Individual candidate implications, such as ⟨{ϕ}, ∅⟩
and ⟨∅, {ϕ}⟩, can then be seen as the special case where the sets of
candidate implications have only one member.

Definition 64 (Implication equivalence, ≈). Let G and F be sets of
candidate implications, then G ≈ F if and only if RSR(G) = RSR(F).

Since it is defined by an identity, this relation is obviously symmetric,
reflexive, and transitive. So implication equivalence is indeed an
equivalence relation. We can now consider classes of sets of implications
that are equivalent to one another, in the sense of implication equivalence.
Indeed, we can define implicational roles as such equivalence classes of
candidate implications. Given that we treat the roles of bearers in terms of
premisory and conclusory roles and we have defined equivalence not only
for implications but for sets of implications, we can define implicational
roles not only for bearers but also for implications and sets of implications,
namely as follows:

Definition 65 (Implicational Role, R(α)). The implicational role, R, of
something, α, is its equivalence class under ≈, namely5:

(1) If α ⊆ S, then R(α) = {x | α ≈ x}.
(2) If α ∈ S, then R(α) = R({α}).
(3) If α ∈ B, then R(α) = ⟨R+(α),R−(α)⟩, where R+(α) = R⟨{α}, ∅⟩

and R−(α) = R⟨∅, {α}⟩.

Clause (3) of this definition says that the implicational role of a bearer,
α, is the pair of the implicational role of ⟨{α}, ∅⟩ and the implicational
role of ⟨∅, {α}⟩, as defined in clause (2) of the definition. These roles of
implications, in turn, are equivalence classes of implications, namely sets
of implications that have the same range of subjunctive robustness. Clause
(1) gives the general case that defines roles of sets of candidate implications,
namely as equivalence classes of such sets.



Implication-Space Semantics 215

To illustrate, the premisory role of bearer ϕ is the set of sets of candidate
implications with the same range of subjunctive robustness as ⟨{ϕ}, ∅⟩.
For example, the singleton of a candidate implication {⟨Γ, ∆⟩} is in
this set if and only if parallel additions of premises or conclusions to
⟨Γ, ∆⟩ and to ⟨{ϕ}, ∅⟩ always either both yield good implications or both
yield implications that are not good. In other words, in any candidate
implication, we can replace the bearer ϕ as a premise salva consequentia—
that is, without turning a good implication into a bad one or vice versa—
with the combination of Γ as premises and ∆ as conclusions, and the other
way around. So, if two bearers have the same premisory role, then they can
be substituted for each other as premises salva consequentia. Conclusory
roles are analogous, except that ⟨{ϕ}, ∅⟩ is changed to ⟨∅, {ϕ}⟩. Hence,
if two bearers have the same conclusory role, they can be substituted for
each other as conclusions salva consequentia. The equivalence classes with
respect to ranges of subjunctive robustness that are implicational roles thus
capture the idea of “playing the same role in implications.”6

According to the notion of an implicational role that we have just
introduced, what it means to play a particular implicational role is to be a
member of a particular equivalence class of things with the same range of
subjunctive robustness. For the case of individual bearers of implicational
roles, their roles are pairs of such equivalence classes, namely the premisory
and the conclusory roles of the bearer.

5.1.2 Conceptual Content and Entailment

An implicational role is an abstraction from the implications among bearers
of implicational roles. Two distinct bearers can have the same implicational
role. And, there can be roles that are not played by any bearer.7 For there
may be ranges of subjunctive robustness for which there is no particular
bearer whose premisory or conclusory role is the equivalence class of that
range of subjunctive robustness. With implicational roles, we have entered
a realm of abstract entities that we may call “conceptual contents.”

What we mean by “conceptual content”—or just “content” for short—is
an implicational role that a bearer could play. Thus, a conceptual content
is a pair of a premisory role and a conclusory role.

Definition 66 (Conceptual Content). If there are two implicational roles
a+ = R(F) and a− = R(G) (for some sets of candidate implications
F and G), then the pair of them is a conceptual content, a. That is,
a = ⟨a+, a−⟩, where a+ is the premisory role and a− is the conclusory role
of the content. The collection of all contents is called C. (Convention: We
will use lowercase typewriter font, as in a, b, c, ..., for conceptual contents
and uppercase typewriter font for sets of contents.)



216 Implication-Space Semantics

Notice that two bearers of implicational roles from a given implication
space have the same conceptual content if and only if one can always
substitute one bearer for the other salva consequentia. That is, replacing
one of the two bearers by the other as a premise or as a conclusion never
turns a good implication into a bad one. We might compare this to possible
worlds semantics suggesting that two sentences have the same content just
in case they can be substituted for each other salva veritate with respect to
every possible world, that is, in arbitrary modal contexts.

We can now understand implications among bearers, as the concrete
manifestation of a more abstract relation of entailment among conceptual
contents, although this concrete manifestation is our only access to the
more abstract relation. To see what we mean, it is helpful to define the
following operation called “adjunction” on implicational roles.

Definition 67 (Adjunction, ⊔). If F, G ⊆ S, then the adjunction
of the implicational roles of F and G, written R(F) ⊔ R(G), is

R({⟨Γ ∪ ∆, Θ ∪ Λ⟩ | ⟨Γ, Θ⟩ ∈ F, ⟨∆, Λ⟩ ∈ G}). We write
n
⊔

i=0
Ri for the

adjunction R0 ⊔ ... ⊔Rn.

Adjunction combines implicational roles by combining by set-theoretic
union the premises and the conclusions of the candidate implications that
play these roles. This yields a unique result for different members of the
implicational roles, so that if R(F) = R(F′), then R(F) ⊔ R(G) =
R(F′) ⊔R(G) (see Appendix, Proposition 105).

We can use this notion of adjunction to define an entailment relation
among contents in terms of implications among bearers. The idea is that
the entailment relation holds among sets of contents G and D just in case,
if we take as premises bearers that play the premisory implicational roles
of the contents in G and we take as conclusions bearers that play the
conclusory implicational roles of the contents in D, then this always yields
a good implication. More precisely, we say that a set of contents, G, entails
a set of contents, D, just in case every set of candidate implications that
plays the implicational role of the adjunction of the premisory roles of the
elements of G and the conclusory roles of the elements of D contains only
good implications.

Definition 68 (Content entailment in an implication frame, ∼). Given
an implication frame ⟨B, I⟩, let G, D ⊆ C and G = {g0, ..., gn} and D =
{d0, ..., dm}, then G ∼ D holds in the implication frame if and only if∪
(

n
⊔

i=0
g+i ⊔

m
⊔

j=0
d−j ) ⊆ I.
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To see what this definition means, let us consider an example. Suppose
we have two sets of bearers of implicational roles Γ = {g0, ..., gn} and
∆ = {d0, ..., dm}. Their implicational roles are R(gi) = ⟨g+i , g−i ⟩ and
R(dj) = ⟨d+j , d−j ⟩, for all 0 ≤ i ≤ n and 0 ≤ j ≤ m. The contents of
the bearers in Γ entail the contents of the bearers in ∆ if and only if the
adjunction of the premisory roles of the bearers in Γ and the conclusory
roles of the bearers in ∆ has only members that are good implications.
In other words, we have to check the adjunction of the following roles:
R⟨{g0}, ∅⟩ = g+0 ,..., R⟨{gn}, ∅⟩ = g+n , and R⟨∅, {d0}⟩ = d−0 , ...,
and R⟨∅, {dm}⟩ = d−m. When we perform this adjunction, the result is:
R⟨Γ, ∆⟩. Hence, the entailment holds if and only if every set of candidate
implications whose range of subjunctive robustness is RSR ⟨Γ, ∆⟩ includes
only good implications.

We have now seen how we can define conceptual content and entailment
for any given implication frame, ⟨B, I⟩.8 Contents and the entailment
relation among them are defined by abstracting away from implications
among concrete bearers, in terms of abstract implicational roles.

5.1.3 Models and Interpretations

The notions of content and entailment that we have just introduced can be
used to interpret sentences of a language. Recall that we have not specified
what bearers of implicational roles are. So, if we are given an implication
frame that uses non-linguistic bearers of implicational roles or bearers from
one language, we can use the contents defined by that implication frame as
interpretants of a(nother) language. As we shall see in this subsection, we
can then use such interpretations to give a treatment of logical vocabulary.

In order to give interpretations of logical vocabulary, however, we
first introduce another operation on implicational roles, which we call
“symjunction.” It is another way to combine implicational roles, in addition
to adjunction.

Definition 69 (Symjunction, ⊓). Let F, G ⊆ S, then: R(F) ⊓ R(G) =
R(F ∪ G).

Similarly to adjunction, the symjunction of roles is unique, in the sense
that it does not depend on which bearers we use to pick out the roles whose
symjunction we compute. That is, if R(F) = R(F′), then R(F)⊓R(G) =
R(F′) ⊓R(G) (see Appendix, Proposition 106).

Although symjunction is defined in terms of a union of sets of candidate
implications, we can think of it as, in a way, isolating the part that two
implicational roles share. To see this, note that R(F ∪ G) is the set of sets
of candidate implications whose range of subjunctive robustness is RSR(F∪
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G). Since we defined the range of subjunctive robustness of a set, however,
as the intersection of the ranges of subjunctive robustness of its members,
RSR(F ∪ G) is the same as

∩
x∈F∪G

RSR(x), which is RSR(F) ∩ RSR(G). The

implicational role of a union of sets of candidate implications is, therefore,
the sets of candidate implications that share their range of subjunctive
robustness with the intersection of the ranges of subjunctive robustness of
the sets of whichwe take the union. Hence, all of the things that yield a good
implication when combined with something that plays the role R(F), and
also when combined with something that plays the roleR(G), yield a good
implication when combined with something that plays the role of their
symjunction R(F) ⊓ R(G). In this sense, as the symbols we have chosen
for them indicate, adjunction and symjunction operate on conceptual roles
in ways somewhat analogous to the way union and intersection operate on
sets.

We can now define an interpretation of a language as a function that
assigns each sentence a conceptual content.

Definition 70 (Interpretation Function, J· K). An interpretation function J· K
maps sentences of a language L to some conceptual contents C. If A ∈ L
is an atomic sentence, then JAK =d f . ⟨a+, a−⟩ ∈ C . The logical-connective
clauses that an interpretation must respect are as follows:J¬AK =d f . ⟨a−, a+⟩,JA → BK =d f . ⟨a− ⊓ b+ ⊓ (a− ⊔ b+), a+ ⊔ b−⟩,JA ∧ BK =d f . ⟨a+ ⊔ b+, a− ⊓ b− ⊓ (a− ⊔ b−)⟩,JA ∨ BK =d f . ⟨a+ ⊓ b+ ⊓ (a+ ⊔ b+), a− ⊔ b−⟩.

Interpretations of sets of sentences are the set of the interpretants of the
sentences, that is, JΓK = {JγK | γ ∈ Γ}.

In general, these semantic clauses assign contents to logically complex
sentences by assigning ranges of subjunctive robustness to their use
as premises and as conclusions. The clauses place logically complex
sentences in an equivalence class of sets of implications with the same
range of subjunctive robustness. That makes sense because, according to
implication-space semantics, what it is for a sentence to have a content
is for it to be a member of an equivalence class with respect to ranges of
subjunctive robustness.

To understand how interpretation functions work, it may be helpful to
notice that negation swaps the premisory and conclusory roles, so that the
content that an interpretation function assigns to a negation ¬ϕ is always
the content that is like the content that the function assigns to ϕ except that
the premisory and the conclusory roles are swapped. Hence, the ranges of
subjunctive robustness of ⟨{¬ϕ}, ∅⟩ and ⟨∅, {¬ϕ}⟩ are, respectively, the
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ranges of subjunctive robustness of ⟨∅, {ϕ}⟩ and ⟨{ϕ}, ∅⟩. So, whatever
yields a good implicationwhen combinedwith ⟨{¬ϕ}, ∅⟩ also yields a good
implication when combined with ⟨∅, {ϕ}⟩. This is how negation allows us
to make explicit incompatibility. For we encode the fact that a set of bearers
Γ is incompatible with the bearer ϕ in our implications as ⟨Γ ∪ {ϕ}, ∅⟩ ∈ I.
And our negation clauses ensure that we can substitute the negation for
the negatum on the other side salva consequentia to get: ⟨Γ, {¬ϕ}⟩ ∈ I.
Thus, the negation makes explicit, on the right side of an implication, that
it is ruled out by what is on the left side. This is precisely the explicative
potential that we described as the essential function of negation in Chapter
Three.

For the interpretation of conditionals, the content of a conditional
always has as its conclusory role the adjunction of the premisory role of
the antecedent and the conclusory role of the consequent. That means
that the range of subjunctive robustness of ⟨Γ, ∆ ∪ {ϕ → ψ}⟩ is always
identical to the range of subjunctive robustness of ⟨Γ ∪ {ϕ}, ∆ ∪ {ψ}⟩.
This ensures that the conditional makes implications explicit in the way
described in Chapter Three. Namely, it ensures that ⟨Γ ∪ {ϕ}, ∆ ∪ {ψ}⟩ ∈
I just in case ⟨Γ, ∆ ∪ {ϕ → ψ}⟩ ∈ I, which is a formulation of the
Deduction-Detachment Condition on Conditionals from Chapter Three.

And the premisory role that an interpretation function assigns to a
conditional is the symjunction of the conclusory role of the antecedent,
the premisory role of the consequent, and the adjunction of these roles.
That means that the range of subjunctive robustness of ⟨Γ ∪ {ϕ → ψ}, ∆⟩
is always the intersection of the range of subjunctive robustness of
⟨Γ, ∆ ∪ {ϕ}⟩ and the range of subjunctive robustness of ⟨Γ ∪ {ψ}, ∆⟩ and
the range of subjunctive robustness of ⟨Γ ∪ {ψ}, ∆ ∪ {ϕ}⟩. In this way,
the semantic clauses for the conditional assign a conceptual content to
conditionals by placing the use of the conditional as a premise and as
a conclusion in equivalence classes with respect to ranges of subjunctive
robustness, that is, by assigning the conditional its premisory and
conclusory implicational role. The clauses for conjunction and disjunction
can be understood in an analogous way.

We can now define models of implication-space semantics. In general, a
model is a space of semantic interpretants together with an interpretation
that assigns an interpretant from that space to every sentence of a given
language. This suggests the following definition of models.

Definition 71 (Models). A model, M, is a pair
⟨

C, J· KM⟩
consisting of

a set of contents, C, and an interpretation function J· KM that maps all
sentences of a given language to contents in C.
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We haven’t used the idea of truth anywhere in our construction in this
chapter, and we also have no use for the traditional notion of truth in a
model. Our basic semantic notion is not truth but implication, that is,
reason relations. Accordingly, we can define a notion of implication among
sets of sentences in a model.

Definition 72 (Implication in a model,∼
M

). We say that the sentences Γ

model-theoretically imply the sentences ∆ in model M, written Γ∼
M

∆, if
and only if the corresponding entailment holds among their interpretants,
G = JΓKM and D = J∆KM, in that model, that is, if and only if G ∼ D.

We generalize this idea from a single model to arbitrary sets of models
as follows:

Definition 73 (Implication in m-models, ∼
m
). Given a subset, m, of all

implication-space models, for a given language, we say that the sentences
in Γ model-theoretically imply the sentences in ∆ in m, written Γ ∼

m
∆, if

and only if Γ∼
M

∆ for all M ∈ m.

We are now ready to explore the effects of interpreting sentences by
assigning contents to them. A first and easy thing to note is that if we
abstract contents from an implication frame whose implication space is
given by a language, then interpreting the sentences of that language in
terms of the abstracted contents in the most straightforward way yields the
implication relation of the implication frame itself.

Proposition 74. Let C be the conceptual contents abstracted from the
implication frame, ⟨L, I⟩ and, hence, S = P(L) × P(L), and let M be
the pair of C and an interpretation function such that JϕKM = R(ϕ) for all

ϕ ∈ L. Then ⟨Γ, ∆⟩ ∈ I if and only if Γ∼
M

∆.

Proof. Suppose that ⟨Γ, ∆⟩ ∈ I. Then, ⟨Γ, ∆⟩ ≈ F only if ⟨∅, ∅⟩ ∈ RSR(F)
and, hence, F ⊆ I. Hence,

∪
(R⟨Γ, ∆⟩) ⊆ I. So, JΓKM ∼ J∆KM. For the

other direction, suppose that JΓKM ∼ J∆KM. Then,
∪
(R⟨Γ, ∆⟩) ⊆ I. But

⟨Γ, ∆⟩ ∈ R ⟨Γ, ∆⟩. Hence, ⟨Γ, ∆⟩ ∈ I. ■

This proposition tells us that we can always abstract conceptual contents
from an implication frame and then use them to interpret the bearers of that
very implication frame, in an, as it were, homophonic way, while leaving
the reason relation among the bearers of implicational roles unchanged.
Thus, every implication frame interprets itself. Since every vocabulary is an
implication frame (namely a lexicon and a consequence relation over it),
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it follows that every vocabulary interprets itself. That is reassuring, but it
is of course not very illuminating. As we will see in the next subsection,
however, conceptual contents can also be used to interpret the theories
from the previous chapters in a way that lets us focus on their isomorphic
implicational roles, that is, on rational forms.

5.2 Interpreting NMMS and Truth-Maker Theory

In this section, we show that the pragmatic-normative theory formulated
in the language of the sequent calculus from Chapter Three and the
semantic-representationalist truth-maker theory from Chapter Four can
be interpreted in implication-space semantics. Both theories can be
understood as having the structure of an implication-space semantics,
each with its own particular extrinsic understanding of the bearers and
exclusion relations that explain conceptual contents. We start with the
sequent calculus for the pragmatic-normative theory and then turn to
truth-maker theory.

5.2.1 Interpreting Normative Bilateralism

Aswe have seen in the previous subsection, we can start with an implication
frame, ⟨B, I⟩, abstract from it its contents, C, and then use those contents
to interpret a given language, in the sense of a set of uninterpreted
sentences. Now, if the language under consideration is not simply a
set of uninterpreted sentences but rather a vocabulary in the sense we
introduced in earlier chapters, then the reason relations over the sentences
put restrictions on viable interpretations. In particular, if we start with a
base vocabulary, like those of Chapter Three, then the base consequence
relation puts constraints on viable interpretations of the language. Let us
make this thought precise.

Recall from Chapter Three that a base, B, is a vocabulary that consists
of just atomic sentences LB and an implication relation,∼

B
, among sets

of these atomic sentences. In order to find a class of models that can
capture the implication relation of such a base, we must look at models
that interpret the sentences of LB in an appropriate way. We say that such
models are fit for the base at issue.

Definition 75 (Model fitness for base). A model, M =
⟨

C, J· KM⟩
is fit for

a base B =
⟨
LB,∼

B

⟩
if and only if, for all ⟨Γ, ∆⟩ ∈∼

B
, the model is such

that JΓKM ∼ J∆KM.
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If b is the set of models that are fit for the base B, then the implications

in b-models (∼
b
) are the implications that hold in all models that are fit for

base B. If we restrict ourselves to models that are fit for the base B, then
the consequence relation defined by the sequent calculus NMMSB and the
model-theoretic implication relation coincide.

Theorem 76. For any base vocabularyB =⟨LB, ∼
B
⟩ and sentences Γ, ∆ ⊆

L in the logically extended lexicon of the base, Γ ∼b ∆ if and only if Γ � ∆
is derivable in NMMSB. (Appendix, Theorem 109)

This theorem immediately entails that, relative to any base vocabulary,
the sequent calculus NMMS is sound and complete with respect to the
implication-space semantics developed in this chapter. To see why this
theorem holds (without going through the details of the proof in the
Appendix), it is helpful to notice that, firstly, the match between atomic
sequents and the implication-space models is ensured by the restrictions
to models that are fit for the base at issue. Secondly, the semantic clauses
for the logical constants in implication-space semantics correspond to the
sequent rules of NMMS in a perhaps surprisingly direct way. To see this
consider the rules for the conditional, as an example:

Γ � ∆, A B, Γ � ∆ B, Γ � ∆, A
[L→]

Γ, A → B � ∆
Γ, A � B, ∆

[R→]
Γ � A → B, ∆

Since these rules are invertible, as we have shown in Chapter Three, the
right rule implies that Γ � A → B, ∆ is derivable if and only if Γ, A � B, ∆
is derivable. This is the Deduction-Detachment Condition from Chapter
Three. It corresponds in implication-space semantics to the claim that

Γ ∼
M

A → B, ∆ holds in a model if and only if Γ, A ∼
M

B, ∆ holds in

that model. Now, Γ ∼
M

A → B, ∆ holds just in case any implication that
plays the role of ⟨Γ, ∆⟩ yields a good implication when it is combined with
anything that plays the conclusory role of A → B. So {⟨Γ, ∆⟩} must be in
the range of subjunctive robustness of ⟨∅, {A → B}⟩, and the same must
hold for any other implications with the same role as ⟨Γ, ∆⟩. Our semantic
clauses for the conditional tell us that the role of ⟨∅, {A → B}⟩ is a+ ⊔ b−,
that is, it is the role of ⟨{A}, {B}⟩. But two things with the same role share
their ranges of subjunctive robustness. So everything with the role {⟨Γ, ∆⟩}
is in the range of subjunctive robustness of ⟨∅, {A → B}⟩ just in case it is

in the range of subjunctive robustness of ⟨{A}, {B}⟩. So, Γ, A∼
M

B, ∆.
For the left rule, [L→], the analogous relation holds. Because the rule

is invertible, it tells us that Γ, A→B � ∆ is derivable if and only if all of
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Γ � A, ∆ and Γ, B � ∆ and Γ, B � A, ∆ are derivable. Suppose that Γ, A →
B ∼M ∆. Then the premisory role of A → B is such that combining
anything that plays that role and anything with the role of ⟨Γ, ∆⟩ yields
a good implication. Hence, ⟨Γ, ∆⟩ (and anything that plays its role) is
in the range of subjunctive robustness of ⟨{A → B}, ∅⟩. The semantic
clause for the conditional informs us that the role of ⟨{A → B}, ∅⟩ is
a− ⊓ b+ ⊓ (a− ⊔ b+). And, as we noted above, the range of subjunctive
robustness of a symjunction of roles is the intersection of the ranges of
subjunctive robustness of the roles whose symjunction it is. So, the range
of subjunctive robustness of a− ⊓ b+ ⊓ (a− ⊔ b+) is the intersection of the
ranges of subjunctive robustness of ⟨∅, {A}⟩ and ⟨{B}, ∅⟩ and ⟨{B}, {A}⟩.
Therefore, ⟨Γ, ∆⟩ (and anything that plays its role) is in the ranges of
subjunctive robustness of all of ⟨∅, {A}⟩ and ⟨{B}, ∅⟩ and ⟨{B}, {A}⟩
(and anything that plays the same roles). And that is just another way to

say that Γ∼
M

A, ∆ and Γ, B∼
M

∆ and Γ, B∼
M

A, ∆ all hold.
The other sequent rules of NMMS correspond to the other semantic

clauses of implication-space semantics in an analogous way (see Appendix,
Proposition 108). So, the rules of NMMS are not only equivalent to the
semantic clauses of truth-maker theory, as we have shown in the previous
chapter, but they are also equivalent to the semantic clauses of implication-
space semantics. Indeed, we can formulate this correspondence in a general
way as follows. The first element in the roles defined by the semantic
clauses corresponds to the left rule in the sequent calculus, and the second
element corresponds to the right rule in the sequent calculus. The roles
super-scripted with a “+” stem from sentences that occur on the left in a
top sequent, and the roles super-scripted with a “−” stem from sentences
that occur on the right in a top sequent. An adjunction indicates that
the adjoined roles stem from sentences in a single top sequent. And a
symjunction indicates that the symjoined roles stem from sentences that
occur in different top sequents. Given that the contexts are always shared
in all the sequents of any rule application, using this correspondence, the
semantic clauses above uniquely determine the sequent rules ofNMMS, and
the other way around.

All the virtues and features of NMMS carry over to ∼b . In particular,
the logical vocabulary of implication-space semantics makes explicit
reason relations in the same sense as NMMS. The Deduction-Detachment
Condition on Conditionals, the Incoherence-Incompatibility Condition on
Negation, the Antecedent-Adjunction Condition on Conjunctions, and
the Succedent-Summation Condition on Disjunctions all hold in every

implication-space model. Moreover, ∼b can codify nonmonotonic and
nontransitive implication relations; thus, it allows us to codify and theorize
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open reason relations. Similarly, the relation between NMMS and classical
logic carries over to implication-space semantics. Let us spell out the last
point in a bit more detail.

We know from our discussion of NMMS that if we start with a
base consequence relation that includes all and only the instances of
Containment, then the logically extended consequence relation coincides
with classical propositional consequence. And if the base consequence
relation includes all instances of Containment, then the logically extended
consequence relation includes the classical propositional consequence
relation. Hence, the following is an immediate corollary of Theorem 76.

Corollary 77. If the base B =
⟨
LB, ∼

B

⟩
is such that, for all Γ, ∆ ⊆ LB,

we have Γ ∼
B

∆ just in case Γ ∩ ∆ ̸= ∅, then
CL

= ∼b . And if the base is

such that, for all Γ, ∆ ⊆ LB, we have Γ ∼
B

∆ if Γ ∩ ∆ ̸= ∅, then
CL

⊆ ∼b .

Just as in NMMS, we can say that, for bases that obey Containment,
there is a narrowly logical part of the consequence relation defined by
implication-space semantics, and this narrowly logical part is simply
classical logic. Given any base that obeys Containment, its narrowly logical
part is the part of the logically extended consequence relation that it shares
with the extensions of all other bases that obey Containment.We could also
formulate this connection thus: If we say that a proper conceptual content
is a conceptual content, p, such that, for all q,

∪
(p+ ⊔ p− ⊔ q) ⊆ I, then

the implications in any implication-space model with only proper contents
include all implications of classical logic. It is supraclassical.

5.2.2 Interpreting Truth-Maker Theory

We now turn to truth-maker theory. We can define an implication frame
for any modalized state space, ⟨S, S3,⊑⟩, by letting the bearers be worldly
propositions, that is, pairs of sets of states from S, and defining the good
implications by appeal to impossible states in the waywe did in the previous
chapter.

Definition 78 (Implication frame of a modalized state space). Given a
modalized state space, ⟨S, S3,⊑⟩, its implication frame is ⟨B, I⋄⟩, with B =
P(S)×P(S) being the set of worldly propositions of the state space, which
we denote by p = ⟨p+, p−⟩ and the like. And I⋄ ⊆ P(B) × P(B) is the
relation such that ⟨{p1, ..., pn}, {q1, ..., qm}⟩ ∈ I⋄ if and only if s ̸∈ S3, for
all states s = t1 ⋓ ...⋓ tn ⋓ u1 ⋓ ...⋓ um such that ti ∈ p+

i , for all 1 ≤ i ≤ n,
and uj ∈ q−j , for all 1 ≤ j ≤ m.
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This definition is long but all it does is to take a modalized state space and
return the set of worldly propositions in that state space and the implication
relation among these propositions, according to the idea of truth-maker
consequence that we introduced in the previous chapter. According to
this idea, a set of worldly propositions implies another just in case any
fusion of a truth-maker of each proposition in the first set and a falsity-
maker of each proposition in the second set is an impossible state. With
p+ being the set of truth-makers and p− being the set of falsity-makers
of a worldly proposition p, this conception of truth-maker consequence
yields the implication relation I⋄. So, the implication frame of a modalized
state space is really just the set of worldly propositions in the state space of
truth-maker theory and the consequence relation among them, according
to truth-maker consequence.

We can now interpret a modalized state space by its implication frame.
We think of the modalized state space as providing us with a “vocabulary,”
that is, a “lexicon” and a consequence relation over that “lexicon”
(although worldly propositions are, of course, not sentences). We then
let this vocabulary interpret itself, as we did in Proposition 74 above.
This yields an interpretation of truth-maker theory in implication-space
semantics.

Theorem 79. Let M be the implication-space model defined by the
implication frame, ⟨B, I⋄⟩, of the modalized state space ⟨S, S3,⊑⟩ and the
interpretation function such that JxKM = R(x) for all x ∈ B. Then P PI C

holds in the modalized state space if and only if P ∼
M

C. (Appendix,
Theorem 110)

This theorem says that, for anymodalized state space, we can interpret its
worldly propositions by assigning them contents from implication frames
in a way that preserves the implication relations among these worldly
propositions. Notice that the theorem does not make any use of a language
in the usual sense. What we interpret is a set of worldly propositions.9

Notice that there seems to be a certain asymmetry between implication-
space semantics and truth-maker theory in Theorem 79. For one might
wonder why we cannot map the implication relation among contents in
truth-maker theory, PI , directly to the entailment relation among contents
in implication-space semantics, ∼, without invoking the middle man of an

interpretation in∼
M

. The answer is that truth-maker theory allows for two
distinct worldly propositions, A and B, such that, for all sets of worldly
propositions P and C, we have P, A PI C just in case P, B PI C and
P PI A, C just in case P PI B, C. That is, there can be two distinct
worldly propositions, in a truth-maker model, that play the same roles
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in propositional implications. In particular, these are worldly propositions
whose truth-makers and falsity-makers make the same contributions,
respectively, to the impossibility or possibility of states of which they are
parts. The analogous situation, however, cannot occur in implication-space
semantics. That is, if, for all sets of conceptual contents G and D, we have
G, p ∼ D just in case G, q ∼ D and G ∼ p, D just in case G ∼ q, D, then p = q.
After all, a conceptual content is an equivalence class with respect to roles
in good implications. So contents that play the same such roles are identical.
It is only at the level of content bearers that we can have distinct items that
play the same role in implications. Hence, to map a relation in implication-
space semantics one-to-one to a consequence relation in a truth-maker
model, we must use a space of content bearers and not conceptual contents
themselves. In this sense, the worldly propositions of truth-maker theory
are more like sentences than the conceptual contents of implication-space
semantics: there can be distinct worldly propositions with the same content,
but there cannot be distinct contents with the same content.

If we use interpretation functions on both sides, in truth-maker theory
and in implication-space semantics, we can avoid this asymmetry. Indeed,
it follows from Theorem 79 that if there is a truth-maker model in
which exactly a particular set of implications hold among the interpreted
sentences, then there is an implication-space model in which exactly
the same implications hold. The theorem ensures that for every truth-
maker model, there is a parallel implication frame model such that the
consequence relation defined by these models coincide. To make this
precise, let us define explicitly what we mean by “parallel models.”

Definition 80 (Parallel Models). Let L be a language, then an implication-
space model M and a truth-maker model M′ are parallel just in case, for
all ϕ ∈ L, JϕKM = |ϕ|M

′
and the implication frame ofM is the implication

frame of the modalized state space of M′.10

Truth-maker models and implication-space models that are parallel in
this sense codify the same consequence relation over the common language
that they interpret.

Proposition 81. If the implication-space modelM and truth-maker model

M′ are parallel, then Γ ∼
M

∆ just in case Γ TM ∆ in M′. (Appendix,
Theorem 111)

If we are given any truth-maker model, we can construct the parallel
implication-space model. We simply take the implication frame of the
modalized state space of the truth-maker model and add the interpretation
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such that JϕKM = |ϕ|M
′
for all ϕ ∈ L. Hence, it follows from the last

theorem that if there is a truth-maker model that codifies a particular
consequence relation over a language, then there is an implication-space
model that codifies the same consequence relation over that language.

We can also go in the other direction. If we are given an implication-space
model that codifies a particular consequence relation over a language, then
we can construct a truth-maker model that codifies the same consequence
relation over that language.

Proposition 82. If there is an implication-space model M such that∼
M

=
X, then there is a truth-maker model M′ such that TM = X. (Appendix,
Proposition 112)

Putting the two directions together yields:

Theorem 83. There is an implication-space model M such that∼
M

= X if
and only if there is a truth-maker model M′ such that TM = X.

It follows immediately from this theorem that truth-maker theory and
implication-space semantics are equivalent in their power to provide
counterexamples to implications. Hence, if we think of model theory as
a way to provide counterexamples to implications, then these two theories
are equivalent as model theories. However, we have seen that implication-
space semantics provides an account of conceptual contents as roles in
implications, while truth-maker theory allows for worldly propositions
that play the same implicational roles. In this sense, the interpretants
of implication-space semantics are more abstract; they correspond to
equivalence classes of the interpretants of truth-maker theory.

With all this in place, it is easy to show that if we restrict our implication-

space models to models that are fit for a material baseB, thus looking at∼
b

as we did in the previous section, then this yields a consequence relation that
coincides with the truth-maker consequence for the same material base.

Proposition 84. Γ ∼b ∆ just in case Γ TM

B
∆. (Appendix, Proposition 113)

Let us take stock. We can use implication-space semantics to interpret
the sequent calculus NMMS and truth-maker theory in parallel ways.
Both theories provide us with a space of bearers of implicational roles.
These are sentences in NMMS and they are worldly propositions in truth-
maker theory.11 Moreover, both theories provide us with an implication
relation over sets of bearers; this relation is∼ in NMMS and I⋄ (defined by
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S3) in truth-maker theory. So, we can abstract conceptual contents from
both theories. We can give accounts of the logical connectives in all three
theories, and they have exactly corresponding effects in their respective
theories. That is, the operational rules of NMMS and the semantic clauses
for the connectives in truth-maker theory are both equivalent to the
semantic clauses of implication-space semantics. So, the three theories are
equivalent as logical theories. However, implication-space semantics is,
in one sense, the most abstract theory of the three theories. For it is an
intrinsic semantic theory: it uses reason relations itself to interpret the items
that stand in these reason relations. The codification of reason relations in
the metavocabulary of implication-space semantics does not explain these
reason relations in terms of normative exclusion relations among discursive
acts or alethic exclusion relations among worldly states. Implication-space
semantics does not specify what the bearers of implicational roles are or
what the nature of exclusion relations between them is. We have thus
arrived at an intrinsic characterization of the rational forms that we
encountered in NMMS and in truth-maker theory.

5.3 The Monoidal Structure of Reason Relations

Let us take one more step to an even higher level of abstraction and
ask what the general structure is that allows us to interpret NMMS
and truth-maker theory in implication-space conceptual role semantics.
Doing so is a way to ask what general class of things can fruitfully be
interpreted in implication-space semantics. And given that this implication-
space semantics is the intrinsic metavocabulary of reason relations, that
question is equivalent to the question of what the structural features of
reason relations in general are. As it turns out, mathematically speaking, the
answer to this question is that reason relations in general have the structure
of sets of pairs that form a commutative monoid together with a bipartition
of the monoid set. In this subsection, we want to explain this answer.

A commutative monoid is a set, M, with a binary associative and
commutative operation, #, on M such that there is an identity element,
e, in M, that is, an element such that for all m ∈ M, m # e = m. Now,
in the case of reason relations, the elements of our monoid are pairs of
sets among which reason relations hold, and we call these pairs “candidate
implications.” In the theories in this book, we usually think of the operation# on candidate implications as the union of the two elements of the pairs
that are candidate implications, so that ⟨x, y⟩ # ⟨u, w⟩ = ⟨x ∪ u, y ∪ w⟩.
However, what matters for the structure of implication-space semantics
is merely that the operation # that combines candidate implications is
such that ⟨x, y⟩# ⟨u, w⟩ = ⟨u, w⟩# ⟨x, y⟩ and ⟨x, y⟩# (⟨u, w⟩# ⟨v, z⟩) =
(⟨x, y⟩ # ⟨u, w⟩) # ⟨v, z⟩: commutativity and associativity. In cases in
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which the items that stand in implication relations are not sets but, say,
multisets (which we use when dealing with structurally noncontractive
reason relations), an operation other than union must be used here, such
as multiset union.12 As long as this underlying operation is associative and
commutative, the emerging operation on pairs will also be associative and
commutative.

Why do we need an operation that combines candidate implications,
like #, in order to formulate an implication-space semantics? We need
it in order to define ranges of subjunctive robustness, which are in turn
what defines equivalence classes of implications and, hence, implicational
roles. Why is this operation associative and commutative? Because the
ordering and grouping of premises and conclusions does not matter for
implications.13

Given the associative and commutative operation on sets of pairs,
the only thing that is missing to arrive at a commutative monoid is an
identity element. In the case of sets as the relata of reason relations, the
identity element is the pair ⟨∅, ∅⟩; for clearly ⟨x ∪ ∅, y ∪ ∅⟩ = ⟨x, y⟩.
In implication-space semantics, the existence of an identity element is
important because it ensures that the range of subjunctive robustness of
a candidate implication determines whether the candidate implication is a
good implication. For it is easy to see that a candidate implication is a good
implication just in case the identity element is in the candidate implication’s
range of subjunctive robustness. In this way, we can ensure that there
cannot be two equivalent implications, that is, implications with the same
range of subjunctive robustness, of which one is good and the other
is not.

So far, we have seen that if we have a set of implications and the
premises and conclusions of these implications are combined in a way that
is associative and commutative and there is something we can combine with
any premises and conclusions without changing the result, then we have
a space of implications that is a commutative monoid of pairs. In order
to define ranges of subjunctive robustness and, hence, implicational roles,
however, we also need a bipartition that distinguishes the good and the bad
implications, so that we can say that the range of subjunctive robustness of
a candidate implication is the set of candidate implications that yield good
implications when combined with the target candidate implication.

Let us sum up. The structure of a commutative monoid of pairs with
bipartition is necessary for an implication frame. For any implication frame
⟨B, I⟩, the set S = P(B) × P(B) with the operation of ⟨x, y⟩ # ⟨u, w⟩ =
⟨x ∪ u, y ∪ w⟩ and the identity element ⟨∅, ∅⟩ is a commutative monoid
and I is a particular subset of the monoid set. Going in the other direction,
once we have a commutative monoid of pairs with bipartition, then we can
define ranges of subjunctive robustness and, hence, implicational roles. For
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let ⟨M,#, I⟩ be a commutative monoid, ⟨M,#⟩, and a subset I ⊆ M (which
of course defines a partition on M). Then we can say that, for M ⊆ M, the
range of subjunctive robustness is RSR(M) = {x : ∀m ∈ M (x # m ∈ I)}.
Moreover, we can say that for all N, M ⊆ M, N ≈ M if and only if
RSR(N) = RSR(M). And then we can define implicational roles in the
structure ⟨M,#, I⟩ as above. The definitions of interpretation functions,
models, and entailment then all follow as above. We accordingly arrive
at an implication-space model.

So we have a structure in which we can identify implicational roles (in
the way in which we do in implication-space semantics) just in case the
structure is a commutative monoid of pairs with a bipartition. It is precisely
in such structures that it makes sense to speak of bearers of implicational
roles. Since reason relations are relations among bearers of implicational
roles, this is the general structure of reason relations.

5.4 Noncontractive Reason Relations

In this section, we demonstrate the flexibility of the apparatus of
implication-space semantics by extending its expressive power to capture
structurally open reason relations in which Contraction fails in implication-
space semantics. We discuss two examples, namely the sequent calculus
NMMS/ctr

B and multiplicative additive linear logic.

5.4.1 Noncontractive Material Consequence Relations

In Chapter Three, we formulated not only the sequent calculus NMMSB,
which allows failures of Monotonicity and Cut, but also NMMS/ctr

B , in
which Contraction can fail. We are now in a position to formulate
an implication-space conceptual role semantics for the sequent calculus
NMMS/ctr

B . We start by thinking of implication frames as pairs of bearers
and relations between multi-sets of bearers, thus thinking of implication
among bearers as a relation between multi-sets rather than sets. The
definitions of ranges of subjunctive robustness, adjunction, symjunction,
and conceptual contents are adjusted accordingly, always replacing set-
theoretic notions applied to sets of bearers with their counterparts for
multi-sets, which keep track of the number of occurrences of their elements.

Next, we change the semantic clauses for the logical vocabulary,
thus tweaking our notions of interpretation functions and models. A
noncontractive model is a pair of such conceptual contents and a
noncontractive interpretation function, which is defined as follows:

Definition 85 (Noncontractive Interpretation Function, J· K). An interpre-
tation function J· K is defined inductively, and maps sentences of a language
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L to conceptual contents. If A ∈ L is an atomic sentence, then JAK =d f .
⟨a+, a−⟩ ∈ C . The connective clauses are as follows:J¬AK =d f . ⟨a−, a+⟩,JA→̄BK =d f . ⟨a− ⊓ b+, a+ ⊔ b−⟩,JA∧̄BK =d f . ⟨a+ ⊔ b+, a− ⊓ b−⟩,JA∨̄BK =d f . ⟨a+ ⊓ b+, a− ⊔ b−⟩.

Interpretations of sets of sentences are the set of the interpretants of the
sentences, for example: G = JΓK = {JγiK | γi ∈ Γ}.

Furthermore, we adjust our notion of model-theoretic implication as
follows:

Definition 86 (Non-contractive implication in m-models, ∼
m
). Given a

subset of all non-contractive implication-space models m, for a given
language, we say that the sentences in Γ model-theoretically imply in m

the sentences in ∆, written Γ ∼
m

/ctr ∆, if and only if Γ∼
M

∆ for all M ∈ m.

The so-defined implication-space semantics is sound and complete with
respect to the sequent calculus NMMS/ctr

B from Chapter Three.

Theorem 87. Let B =
⟨
LB, ∼

B

⟩
be a base vocabulary in which

contraction may fail, let b be the set of models that are fit for B, and let

Γ, ∆ ⊆ L. Then Γ ∼b /ctr ∆ if and only if Γ � ∆ is derivable in NMMS/ctr
B .

(Appendix, Theorem 114)

This theorem says that we have an implication-space semantics for the
noncontractive reason relations codified by NMMS/ctr. It follows that the
representation theorem from Chapter Three holds for the consequence
relations formulated in noncontractive implication-space semantics, just
as it does for the sequent-calculus version. So, for every set of candidate
implications in the base, there is a single candidate implication in the
logically extended vocabulary that holds if and only if all the candidate
implications in the base hold.

It may be noted that the semantic clauses of the implication-space
semantics for NMMS/ctr are a bit simpler than those for NMMS. This
difference corresponds exactly to the difference between the sequent rules
with two top sequents in NMMS/ctr and with three top sequents in NMMS.
In the sequent rules of NMMS and in the semantic clauses for NMMS, the
third element in the sequent rules and the semantic clauses, respectively, is
needed to ensure that Contraction is admissible.
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5.4.2 Linear Logic

Failures of contraction are perhaps most familiar from linear logic. Hence,
one might wonder whether one can recover linear logic in our implication-
space semantics. Indeed, one can. We will not consider the so-called
exponential connectives or quantifiers here, thus limiting ourselves to
multiplicative additive linear logic (known as “MALL”). More specifically,
we will give semantic clauses for multiplicative conjunction (⊗, also known
as “tensor” or “times”), multiplicative disjunction (O, also known as
“par”), additive conjunction (&, also known as “with”), and additive
disjunction (⊕, also known as “plus”).

In order to formulate MALL in implication-space semantics, we leave
the noncontractive models unchanged except for the semantic clauses. In
particular, we change the definition of interpretation functions as follows:

Definition 88 (LL Interpretation Function, J· K). An interpretation functionJ· K is defined inductively, and maps sentences of a language L to conceptual
contents. If A ∈ L is an atomic sentence, then JAK =d f . ⟨a+, a−⟩ ∈ C . The
connective clauses are as follows:J¬AK =d f . ⟨a−, a+⟩,JA ⊗ BK =d f . ⟨a+ ⊔ b+, RSR(RSR(a−) ⊔ RSR(b−))⟩,JAOBK =d f . ⟨RSR(RSR(a+) ⊔ RSR(b+)), a− ⊔ b−⟩,JA&BK =d f . ⟨RSR(RSR(a+) ∪ RSR(b+)), a− ⊓ b−⟩,JA ⊕ BK =d f . ⟨a+ ⊓ b+, RSR(RSR(a−) ∪ RSR(b−))⟩,

Interpretations of sets of sentences are the set of the interpretants of the
sentences, for example, G = JΓK = {JγiK | γi ∈ Γ}.

The two conjunctions of linear logic each share one of their roles
with the conjunction of NMMS/ctr. The premisory role of a multiplicative
conjunction A ⊗ B is the premisory role of the conjunction of NMMS/ctr

(and also of NMMS), namely a+ ⊔ b+. The conclusory role of the additive
conjunction A&B is the conclusory role of the conjunction of NMMS/ctr,
namely a− ⊓ b−. Similarly, the two disjunctions of linear logic each share
one of their roles with the disjunction of NMMS/ctr. The conclusory role of
the multiplicative disjunction AOB is the conclusory role of the disjunction
of NMMS/ctr (and also of NMMS), namely a− ⊔ b−. The premisory role of
the additive disjunction A ⊕ B is the premisory role of the disjunction of
NMMS/ctr, namely a+ ⊓ b+.

The differences betweenMALL andNMMS/ctr lie in the other roles, which
are all the roles whose clauses (directly) mention ranges of subjunctive
robustness, namely the conclusory roles of multiplicative conjunction and
additive disjunction and the premisory roles of multiplicative disjunction
and additive conjunction. All the implicational roles that are new in
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linear logic are defined as roles of ranges of subjunctive robustness of
combinations of ranges of subjunctive robustness, where this combination
can happen either by adjunction or by set union. The combination happens
by adjunction for the multiplicative connectives, and it happens by set
union for the additive connectives.

It is noteworthy that, for each of the four linear connectives, if we allow
ourselves to replace the range of subjunctive robustness of a premisory
(conclusory) role with the corresponding conclusory (premisory) role and
the other way around, then we can move back and forth between the
premisory and the conclusory roles by taking the range of subjunctive
robustness of the role with which we begin. For instance, a+ ⊔ b+ is the
premisory role of A ⊗ B. Replacing the premisory roles with ranges of
subjunctive robustness of conclusory roles yields RSR(a−)⊔ RSR(b−). If we
now take the role of the range of subjunctive robustness of this result, we
get RSR(RSR(a−) ⊔ RSR(b−)), which is the conclusory role of A ⊗ B. The
same works in the other direction, for RSR(RSR(RSR(a−) ⊔ RSR(b−))) is
RSR(a−) ⊔ RSR(b−), from which we can move to a+ ⊔ b+. This works for
all four connectives. In this way, we can compute the roles that are new in
linear logic, relative to NMMS/ctr, in a uniform way.

An important upshot of this last observation is that if the sentences
in linear logic are such that the premisory roles are the roles of ranges
of subjunctive robustness of their conclusory roles and the other way
around, then this is preserved by the linear connectives. Note, however,
that our negation rule, which remains unchanged in linear logic, encodes
the idea that negating something amounts to swapping the premisory and
the conclusory role of what one negates. Hence, it now seems that there are
two ways to switch between premisory and conclusory roles of something,
namely, first, by taking its negation and, second, by taking the role of its
range of subjunctive robustness. This is the crucial conceptual insight that
allows us to move between the implication-space semantics for NMMS
and linear logic. As will become clearer below, one way to understand
implication-space semantics is to view it as what happens to phase-space
semantics for linear logic if one allows negation and ranges of subjunctive
robustness to come apart. The result of making this distinction is increased
expressive power.

With the intepretations of multiplicative and additive conjunction and
disjunction defined in this way, we restrict our space of models to those in
which

∪
(a+ ⊔ a−) ⊆ I for all roles of sentences JAK = a and, hence A, we

have A ∼
M

A, and we use “∼
LL

” for implications that hold in all of these
models. The so-defined consequence relation is the consequence relation of
MALL.



234 Implication-Space Semantics

Theorem 89. A is a linear tautology if and only if ∼
M

A in all LL
implication-space models. And, hence, Γ |= ∆ in MALL if and only if

Γ∼
LL

∆. (Appendix, Theorem 128)

It might be illuminating to give some hints regarding why this theorem
is true (without going through the details of the proof in the Appendix).
Girard’s (1987) phase-space semantics for MALL starts with a definition of
a phase space, which is a commutative monoid of set P, a commutative
and associative operation • on that set, an identity element 1, and a subset
⊥P⊆ P. Girard then defines the so-called dual, G⊥, of subsets of P as
follows: G⊥ is {p ∈ P | ∀q ∈ G (p • q ∈⊥P)}. That is, the dual of G
is the set of elements of P whose combination with anything in G is in
⊥P. So, if we think of P as the set of candidate implications and ⊥P as the
good implications, then the dual of something is its range of subjunctive
robustness. Girard then restricts his attention to so-called facts, which
are subsets of P such that G = G⊥⊥. There is a mapping between such
structures and implication frames.

• A phase space corresponds to an implication frame, where P corresponds
to the space of implications S, the anti-phases⊥P correspond to the good
implications I and the identity element, 1, of the phase space corresponds
to e = ⟨∅, ∅⟩.

• The dual of subsets of P corresponds to the range of subjunctive
robustness of subsets of S.

• Restricting our attention to facts corresponds to working with roles of
candidate implications rather than simply candidate implications.

We can thus map phase spaces to implication frames and the other way
around. This correspondence between phase spaces and implication frames
reveals that implication-space semantics is a close relative of phase-space
semantics.14 The proof of Theorem 89 relies on this correspondence, which
is developed in more detail in the Appendix.

The most important difference between implication-space semantics and
phase-space semantics is that, in Girard’s phase-space semantics, the dual
of facts perform two tasks at once, namely the task of providing a treatment
of negation and the task of serving, in effect, as ranges of subjunctive
robustness. By contrast, in implication-space semantics, these two tasks
are played by distinct items. The two-sidedness of implicational roles
in implication-space semantics takes over the first of these tasks, while
ranges of subjunctive robustness perform the second task. If we restrict
our attention to LL models in implication-space semantics, the difference
between these two items is elided, which comes out in the fact that in the
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canonical LL models, which are the models such that
∪
(a+ ⊔ a−) ⊆ I

for all roles of sentences JAK = a and nothing else is in I, we have
RSR(a+) = a− and RSR(a−) = a+ (Appendix: Lemma 125). Hence, in the
canonical LL models RSR(a) = ¬a. This does not hold in implication-space
models in general, but it is built deeply into the structure of phase-
space models. Thus, implication-space semantics is a generalization of
Girard’s phase-space semantics, namely a generalization in which ranges
of subjunctive robustness and the interpretation of negation need not
coincide.

This generalization allows us to include material implications from the
nonlogical base consequence relation in implication-space semantics, and
it allows for failures of Cut. To see this, note that if only implications
whose role has the form a+ ⊔ a− are good implications, as is the case in
the implication-space models that codify linear logic, then the only thing in
the range of subjunctive robustness of occurrences of a premisory role of
some bearer are occurrences of the conclusory role of the same bearer. That
is only implications whose role is that of an implication of the form ϕ ∼ ϕ.
This implies that only formally good implications are included as good
implications in linear logic. Materially good implications are excluded. It is
of the essence of logical expressivism to reject such an expressive restriction.

Moreover, since the instances of ϕ ∼ ϕ are closed under Cut, it
is built into the phase structures of linear logic that Cut holds. So,
the phase-space semantics for linear logic cannot capture open reason
relations. If one allowed implications whose roles are not of the form
a+ ⊔ a− to be good implications, then the range of subjunctive robustness
of bearers is no longer guaranteed to coincide with the role of their
negations. Hence, the dual of a fact can no longer serve as the semantic
interpretant of negation. Therefore, phase-space semantics can capture
neither material nor nontransitive reason relations. It is accordingly
doubly unfit to serve in the logical expressivist project of codifying open-
structured reason relations. Unlike phase-space semantics, implication-
space semantics allows us to give separate treatments of negation and
ranges of subjunctive robustness. In implication-space semantics, we can
codify, for instance, a premisory role such that the range of subjunctive
robustness of its instances includes more than just instances of their
conclusory role, which allows us to codify materially good implications.

As a final remark on the implication-space semantics for linear logic,
it is worth pointing out that the semantic clauses for linear logic given
above illustrate how we can capture sequent rules in which contexts of top
sequents are combined and in which sentences that do not occur anywhere
in a top sequent are introduced as subformulae in the bottom sequent. As
an example of the first phenomenon, note that the conclusory role of A⊗ B
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is RSR(RSR(a−) ⊔ RSR(b−)), and that this corresponds to the following
right-rule in a two-sided sequent calculus for linear logic:

Γ � A, ∆ Θ � B, Λ
[⊗R]

Γ, Θ � A ⊗ B, ∆, Λ

To see how this works, it is helpful to note that RSR(a−) is the set of
contexts ⟨Γ, ∆⟩ such that Γ � A, ∆ is a derivable sequent.15 So RSR(a−) ⊔
RSR(b−) is the set of contexts ⟨Γ ∪ Θ, ∆ ∪ Λ⟩ such that Γ � A, ∆ and
Θ � B, Λ are both derivable. Therefore, RSR(RSR(a−) ⊔ RSR(b−)) as a
conclusory role is the role played by sentences, C, such that Γ, Θ � C, ∆, Λ
is derivable just in case Γ � A, ∆ and Θ � B, Λ are both derivable.

As an example of the second phenomenon, note that the conclusory role
of A1 ⊕ B is RSR(RSR(a−) ∪ RSR(b−)), and that this corresponds to the
following right-rule in a two-sided sequent calculus for linear logic:

Γ � Ai, ∆
[⊕R], i=1 or 2

Γ � A1 ⊕ A2, ∆

As before, RSR(a−) is the set of contexts ⟨Γ, ∆⟩ such that Γ � A, ∆ is
a derivable sequent. And RSR(b−) is the set of contexts ⟨Γ, ∆⟩ such that
Γ � B, ∆ is derivable. So RSR(a−) ∪ RSR(b−) is the set of contexts ⟨Γ, ∆⟩
such that either Γ � A, ∆ or Γ � B, ∆ is derivable. Therefore, RSR(RSR(a−)∪
RSR(b−)) as a conclusory role is the role played by sentences, C, such that
Γ � C, ∆ is derivable just in case Γ � A, ∆ or Γ � B, ∆ is derivable.

One consequence of the last point is that, unlike what happens in
all variants of NMMS, if one extends a base consequence relation by
adding the connectives of linear logic, then sequents that feature linear
logic connectives do not always express a unique set of sequents in the
base consequence relation. Rather, they sometimes express disjunctions of
sequents in the base consequence relation. That is, the sequent featuring
logically complex sentences is derivable just in case one of several distinct
sets of nonlogical sequents are subsets of the base consequence relation.
Thus, one might know that a sequent featuring logically complex sentences
holds without being in a position to know that any particular sequent is
in the base consequence relation. And while one can extend nontransitive
base consequence relations by adding the logical vocabulary of linear logic,
the Cut rule looms large in the motivation and applications of linear
logic. Finally, the nonmonotonicity for which linear logic allows is best
understood as the nonmonotonicity of not including superfluous premises,
not the nonmonotonicity of defeasible material inferences. NMMS is
accordingly vastly to be preferred to linear logic as an expressive logic.
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To sum up, we can formulate an implication-space semantics for
multiplicative additive linear logic. This illustrates how the familiar
additive and multiplicative connectives can be formulated in implication-
space semantics. However, it is built into the phase structures of linear
logic that the role of the negation of a sentence and the role of its range
of subjunctive robustness are the same. This implies that the phase-space
semantics for linear logic can codify neither material nor non-transitive
reason relations. As we have seen above, however, implication-space
semantics can codify open reason relations that include material reason
relations. So implication-space semantics is more flexible and can capture
more kinds of reason relations—and is in this sense expressively more
powerful—than the phase-space semantics for linear logic that originally
inspired it.

5.5 Implicational Role Inclusion

We have noted above that two bearers of roles have the same implicational
role just in case they can always be replaced for one another as premise
and also as conclusion salva consequentia, that is, without turning a good
implication into a bad one. This holds because two bearers with the same
range of subjunctive robustness can always be replaced for each other, salva
consequentia, as premises and as conclusions.

Playing the same implicational role is, however, a particularly strong
version of a more general family of relations of substitutability salva
consequentia. For it may happen that, for any X and Y, if X, A ∼ Y,
then X, B ∼ Y, so that we can always replace A by B, salva consequentia,
as a premise. And this may be true while we cannot always replace B by
A or replace either of them for the other as a conclusion. Indeed, since
we do not assume Cut, and in particular not a context-mixing (that is,
multiplicative) version of Cut, it can happen that we can replace A by B as
a premise but we cannot replace B by A as a conclusion.16 In general, there
can be different cases of substitutability salva consequentia that fall short
of sharing a full implicational role. Since contents and implicational roles
more generally are defined in terms of ranges of subjunctive robustness,
we can think of such inclusions among ranges of subjunctive robustness
as a kind of inclusion relation among contents and other implicational
roles (although not in an immediate set-theoretic sense). In this section, we
want to investigate phenomena like that of an implicational role including
another implicational role. In this way, we study relations of substitutability
salva consequentia in more detail and in greater generality. It turns out that
this allows us to connect implication-space semantics to several familiar
logical theories.
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5.5.1 Foundations of Role Inclusion

In order to study the phenomenon of substitutability salva consequentia
of bearers of roles, it proves useful to define a notion of role inclusion.17

The idea is that the role R(α) is included in the role R(β) if and only
if we can always replace, salva consequentia, something that plays the
first role with something that plays the second role. This is the case if
and only if the range of subjunctive robustness of anything in R(α) is
a subset of the range of subjunctive robustness of anything in R(β). To
see this, take the premisory role of a bearer A: R(⟨{A}, ∅⟩). Its range
of subjunctive robustness consists of all sets of candidate implications
such that for all their elements, ⟨X, Y⟩, we have ⟨X ∪ {A}, Y⟩ ∈ I. Now,
suppose that all of these sets of candidate implications are also in the range
of subjunctive robustness of the premisory role of some other bearer B.
That is, they are in the range of subjunctive robustness of R(⟨{B}, ∅⟩).
Then for every candidate implication, ⟨X, Y⟩, if ⟨X ∪ {A}, Y⟩ ∈ I, then
⟨X ∪ {B}, Y⟩ ∈ I, since ⟨X ∪ {A}, Y⟩ ∈ I holds just in case{⟨X, Y⟩} is
in the range of subjunctive robustness of R(⟨{A}, ∅⟩) and analogously
for ⟨X ∪ {B}, Y⟩ ∈ I. In other words, for any X and Y, if X, A ∼ Y, then
X, B ∼ Y. Thus, we can always replace, salva consequentia, A as a premise
with B as a premise. In such a case we say that the premisory role of B is
included in the premisory role of A. In general, we say that a role is included
in another role just in case the range of subjunctive robustness of the first
role is a subset of the range of subjunctive robustness of the second role, in
all models under consideration.

It will prove useful to generalize this idea to cases in which several roles
are included in several other roles. The following way of doing this proves
fruitful: Take for example the premisory role of A and the conclusory
role of B. They are included in the combined conclusory roles of C and
D, in a class of models, if and only if we have ⟨X, Y ∪ {C, D}⟩ ∈ I

whenever we have ⟨X ∪ {A}, Y⟩ ∈ I and ⟨X, Y ∪ {B}⟩ ∈ I. To put it
differently, this role inclusion holds just in case everything that is in the
range of subjunctive robustness of all the included roles is also in the
range of subjunctive robustness of the adjunction of the including roles.
We thus take the symjunction of the included roles and the adjunction of
the including roles. This particular way for handling sets of implicational
roles makes the relations below easiest to see, and it can helpfully be related
to proofs in sequent calculi. The following definition makes our notion of
implicational role inclusion precise:

Definition 90 (Implicational role inclusion, ⪯). Given a set of implication-
space models, m, we say that the set of implicational roles {R1, ...,Rn}
is included in the set of implicational roles {Rk, ...,Rl} in m, written
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R1, ...,Rn ⪯ Rk, ...,Rl in m, just in case RSR(
n
⊓

i=1
Ri) ⊆ RSR(

l
⊔

j=k
Rj) in

every model in m.

Thus, everything that makes the symjunction of the included roles good
also makes the adjunction of the including roles good. To see what this
amounts to, let us start by noting some general features of implicational role
inclusion. In particular, we can note how structural principles governing
implications of the underlying implication space show up in role inclusions
among contents. The following role inclusions hold, in a model, if and
only if the implications among the bearers with these contents obey
Containment, Monotonicity, and Cut, respectively18:

Containment: ∀p ∈ C (⋆ ⪯ p+ , p−).

Monotonicity: ∀p, q ∈ C (p+/− ⪯ p+/−, q+/−)

Cut: ∀p ∈ C (p+, p− ⪯ e)

To see why these are formulations of the respective structural principles,
recall that e = ⟨∅, ∅⟩ is the empty candidate implication, and ⋆ = ⟨B, B⟩
is the implication whose premise-set and conclusion-set is the set of all
bearers of the implication frame. So the range of subjunctive robustness
of e is the set of good implications I. And the range of subjunctive
robustness of ⋆ is the entire implication space S. After all, ⟨B, B⟩ ∈ I

and ⟨B, B⟩ does not change by taking the set-union of its premises or
conclusions with any set of bearers. So our formulation of Containment
says that whenever we combine the premisory and the conclusory role of
any content of a bearer in one implication (by taking their adjunction),
the result has the maximal range of subjunctive robustness. That is, all
implications in which any bearers with the same content occur on the
left side and also on the right side are indefeasible implications. Similarly,
our formulation of Monotonicity says that anything that makes good all
implications in some (premisory or conclusory) role p+/− also makes good
all implications, p+/− ⊔ q+/−, with additional premises and conclusions.
Finally, our formulation of Cut says that if an implication is made good by
adjoining the premisory role, p+, of a content and it is also made good by
adjoining the conclusory role, p−, of that content, then the implication has a
range of subjunctive robustness that is included in the range of subjunctive
robustness of e. But since RSR(e) = I, this just means that the implication
is already good by itself.

We can now see that, in effect, all of our semantic clauses are statements
of role identities, if we extend the clauses to cover “logically complex”
roles that might not have bearers. They translate immediately into mutual
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role inclusions, namely as follows, where “⪯⪰” stands for a role inclusion
relation that goes in both directions:

Fact 91. By our semantic clauses for the implication-space semantics of
NMMS (Definition 70),19 for any contents a = ⟨a+, a−⟩ and b = ⟨b+, b−⟩,
we have a+ ⪯⪰ (¬a)−, and a− ⪯⪰ (¬a)+, and a+ ⊔ b+ ⪯⪰ (a ∧ b)+,
and a− ⊓ b− ⊓ (a− ⊔ b−) ⪯⪰ (a∧ b)−, and similarly for the other semantic
clauses.

For example, our semantic clauses say J¬AK =d f . ⟨a−, a+⟩, so that
(¬a)− = a+ and (¬a)+ = a−. The resulting mutual role inclusions are
a+ ⪯⪰ (¬a)− and a− ⪯⪰ (¬a)+. And the other semantic clauses imply
mutual role inclusions in an analogous way. It may also be helpful to note
the following immediate consequences of the definition of implicational
role inclusion:

Fact 92. For any roles R⟨Γ, ∆⟩ and R⟨Θ, Λ⟩:

(i) R⟨Γ, ∆⟩ ⪯ e just in case RSR ⟨Γ, ∆⟩ ⊆ I.

(ii) ⋆ ⪯ R ⟨Γ, ∆⟩ just in case, for all implications ⟨X, Y⟩, ⟨Γ ∪ X,
∆ ∪ Y⟩ ∈ I, that is, ⟨Γ, ∆⟩ ∈ I holds persistently.

(iii) R⟨Γ, ∆⟩ ⪯ e,R⟨Θ, Λ⟩ just in case R⟨Γ, ∆⟩ ⪯ R ⟨Θ, Λ⟩.

(iv) ⋆,R⟨Γ, ∆⟩ ⪯ R ⟨Θ, Λ⟩ just in case R⟨Γ, ∆⟩ ⪯ R ⟨Θ, Λ⟩.

Finally, we can use the notion of role inclusion just introduced to define
a notion of content inclusion. Let us start with an intuitive case. There
seems to be a sense in which the content of “Fido is a dog” includes the
content of “Fido is a mammal.” One way to spell out what this means is
the following: Everything that follows from “Fido is a mammal” (together
with any further premises) also follows from “Fido is a dog” (together
with those same further premises). And, conversely, everything that implies
“Fido is a dog” also implies “Fido is a mammal.” We can formulate this
idea in terms of substitution salva consequentia as follows: We can always
substitute salva consequentia “Fido is a mammal” by “Fido is a dog” as
premises. And we can always substitute salva consequentia “Fido is a dog”
by “Fido is a mammal” as conclusions. And putting this in terms of role
inclusion, we can say that the premisory role of “Fido is a mammal” is
included in the premisory role of “Fido is a dog,” and the conclusory role
of “Fido is a dog” is included in the conclusory role of “Fido is a mammal.”
Let us formulate this idea as a general definition:
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Definition 93 (Content inclusion, ⋐). For any contents a = ⟨a+, a−⟩ ∈ C

and b = ⟨b+, b−⟩ ∈ C, we say that content a includes content b, written
b ⋐ a, if and only if b+ ⪯ a+ and a− ⪯ b−.

With this notion of content inclusion in hand, we can say that two
contents overlap just in case there is some third content that is included
in both contents.20

In the remainder of this section, we show that many familiar logics can
be understood as logics of implicational role inclusion. We can thus see
these logics as allowing us to codify different aspects of inclusions among
implicational roles and contents.

5.5.2 Logics Based on the Strong Kleene Scheme

In this subsection, we show how familiar logics that use the strong Kleene
truth-tables emerge as implicational role inclusions within implication-
space semantics (ofNMMS). These logics are Priest’s paraconsistent logic of
paradox (LP), the paracomplete strong Kleene logic (K3), the nontransitive
strict-tolerant logic (ST), and the nonreflexive tolerant-strict logic (TS).

The logics LP, K3, ST, and TS are usually formulated by using three
truth-values, often denoted by 1 (for truth), 0 (for falsehood), and 1

2 for
the third truth-value. All four logics are based on the strong Kleene truth-
tables, which are the following (treating the conditional as defined): the
value of a negation v(¬ϕ) is 1 − v(ϕ); the value of a conjunction is the
minimum of the values among the conjuncts, and the value of a disjunction
is the maximum of the values among the disjuncts. An interpretation is a
function that assigns to each sentence of a language exactly one of these
three truth-values, in a way that respects the strong Kleene truth-tables.

The only difference between LP, K3, ST, and TS is the way in which
consequence is defined in them. If we define consequence as preservation
of values more than 0, this yields the logic LP (Priest, 2006). And if we
define consequence as preservation of value 1, then this yields the logic
K3. A consequence relation holds in ST just in case every interpretation
in which all the premises have value 1 is such that some conclusion has a
value other than 0 (Ripley, 2012; Cobreros et al., 2012, 2020a). And a TS
consequence holds just in case every interpretation in which all the premises
have values other than 0 is such that some conclusion has value 1 (French,
2016; Cobreros et al., 2020a).

Famously, Priest advocates LP as a response to paradoxes, while Kripke’s
solution is based on K3.21 Advocates of LP think of the third truth-value as
representing truth-value-gluts, that is, as cases in which a sentence is both
true and false (in a model). And advocates of K3 think of the third truth-
value as representing truth-value-gaps, that is, as cases in which a sentence
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is neither true nor false (in a model). If we include a paradoxical sentence,
λ, that receives the third truth-value in all models, then LP invalidates
the principle ex contradictione quodlibet, so that λ ∧ ¬λ ̸|=LP . And K3
invalidates the principle of the excluded middle, so that ̸|=K3 λ ∨ ¬λ.

Unless we add paradoxical sentences or the like to our language,
the consequence relation of ST coincides with classical logic, and the
consequence relation of TS is empty. However, one can add a transparent
truth-predicate to all of these logics without making their consequence
relations trivial. If one adds a paradoxical sentence, then Cut fails in ST.
One can think of TS as rejecting Reflexivity (French, 2016).

It is well known that the logics LP and K3 coincide, each in its own
way, with the so-called “local metainferential” consequence relation of
ST (Cobreros et al., 2020a, b; Barrio et al., 2015; Dicher and Paoli,
2019). Metainferential validity is a relation between sets of candidate
implications. A metainference is locally valid just in case every model
that is a counterexample to all the conclusion candidate implications
is a counterexample to at least one premise candidate implication. We
can recover the relation of local metainferential validity in implication-
space semantics. This works because there is an ST-counterexample-
preserving bijection between strong Kleene valuations and a particular
subset of implication-space models, which we call the conic implication-
space models.

Definition 94 (Conic implication-space models). A conic implication-space
model, M, is a reflexive implication space model in which there is a pair

⟨Γ, ∆⟩ such that X ≁
M

Y if and only if ⟨X, Y⟩ ∈ P(Γ)×P(∆).

In a conic implication-space model, for some ⟨Γ, ∆⟩, every bad candidate
implication is such that its premise-set is a subset of Γ and its conclusion-set
is a subset of ∆. Thus, the bad candidate implications form, as it were, a
cone with ⟨Γ, ∆⟩ as a top element and all other bad candidate implications
sitting in a set-theoretic inclusion lattice below that top element (where
the lattice structure is such that both sets of a pair must be subsets of the
elements of the pairs above it). We can map such models to strong Kleene
valuations, v, in an ST-counterexample-preserving bijection as follows:
v(A) = 1 just in case A ∈ Γ, v(A) = 0 just in case A ∈ ∆, and v(A) = 1

2
otherwise. Intuitively, the bad implications are those with true premises
and false conclusions, and ⟨Γ, ∆⟩, at the top of the cone, consists of the
pair of all the true premises and all the false conclusions. So every bad
implication has premises and conclusions that are subsets of these and so
are found lower in the cone on the set-inclusion lattice. It is easy to see that
this bijection maps implications for which the strong Kleene model is an ST
counterexample to implications that are bad in the conic implication-space
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model, and the other way around. For every conic implication-space model,
we can construct the strong Kleene model to which it is mapped by our
bijection, and the other way around. And since the consequence relation of
ST is reflexive, the consequence relations of these conic implication-space
models also obey Reflexivity (see Appendix, Theorem 135).

The well-known connections between ST, LP, K3, and TS emerge in
implication-space semantics in terms of implicational role inclusions over
conic models (see Appendix, Fact 137). In particular, LP agrees with role
inclusions among conclusory roles, and K3 agrees with the converse of role
inclusions among premisory roles, over all conic implication-space models.
ST coincides with the role of implications that include the role of the whole
implication space. And TS coincides with the inclusion of the symjunction
of the roles of the conjunction of the premises and the disjunction of the
conclusions in the role of the identity element.

Proposition 95. Suppose that the only constraint on implication-space
models is that they be conic, and let JΓK = G and G+ = {g+ | g ∈ G}
and G− = {g− | g ∈ G} and analogously for J∆K = D. Then:

Γ |=LP ∆ if and only if (
∧
G)− ⪯ D−.

Γ |=K3 ∆ if and only if (
∨
D)+ ⪯ G+.

Γ |=ST ∆ if and only if ⋆ ⪯ G+, D−.
Γ |=TS ∆ if and only if (

∧
G)−, (

∨
D)+ ⪯ e. (Appendix, Proposition 139)

This means that LP is the logic of conclusory role inclusions. Thus, LP
tells us which conclusions we can always replace salva consequentia for
which other conclusions, in all conic implication-space models. Similarly,
K3 tells us by which premises we can always replace salva consequentia
which other premises, in all conic implication-space models. Since ⋆ ⪯
G+, D− just in case Γ ∼

M
∆ holds persistently in all conic models, ST tells

us which implications are persistently good in all conic models. Moreover,
(
∧
G)−, (

∨
D)+ ⪯ e holds just in case RSR((

∧
G)− ⊓ (

∨
D)+) ⊆ I. So, a

consequence Γ |=TS ∆ holds just in case, for all g ⊆ Γ, if X ∼
M

g, Y, then

X∼
M

Y, and for all d ⊆ ∆, if X, d∼
M

Y, then X∼
M

Y. Thus, TS captures
which sentences can be dropped from an implication salva consequentia.

Since the logics LP and K3 have received considerable attention in the
literature, it may be worth commenting a bit more on how they emerge
in implication-space semantics. Let us start by pointing out that, from
the perspective of implication-space semantics, LP and K3 are limiting
cases that look only at formal implications: implications that hold in all
conic models. For a candidate implication has a counterexample in a conic
model if and only if it has a counterexample in the set of models that obey
Containment. Thus, we lose all information about material implication and
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incompatibility. If we looked at fewer models, for instance, by requiring
that certain material implication and incompatibility relations hold in
the implications spaces of these models, we would get more substantive
role inclusion relations. Thus, LP and K3 provide the lower bounds of
conclusory and premisory role inclusions, respectively. It follows from this
that, given Containment, the intersection of LP and K3, that is, the set of
implications that hold in both logics, is a lower bound on content inclusion.

Proposition 96. The content inclusion b ⋐ a holds in all conic models, if
and only if, for all A such that JAK = a and for all B such that JBK = b, we
have A |=K3 B and A |=LP B.

Let us now turn to the paraconsistent and paracomplete natures of
LP and K3, respectively. The principles that LP and K3 reject, but that
hold in classical logic, are related in intimate ways to substitution salva
consequentia. In classical logic, we have (a ∧ ¬a)− ⪯ e and (a ∨ ¬a)+ ⪯
e. The first of these role inclusions can be viewed as a version of ex
contradictione quodlibet, and it fails in LP. In particular, the role inclusion
(a ∧ ¬a)− ⪯ e says that, in all conic models, for all Γ and all ∆, if

Γ ∼
M

A ∧ ¬A, ∆, then Γ ∼
M

∆. The second can be viewed as a version
of excluded middle, and it fails in K3. In particular, the role inclusion
(a ∧ ¬a)+ ⪯ e says that, in all conic models, for all Γ and all ∆, if

Γ, A ∨ ¬A∼
M

∆, then Γ∼
M

∆.
Given Containment, these two role inclusions are both versions of Cut

in the underlying implication space. For, (a∧ ¬a)− ⪯ e if and only if a− ⊓
a+ ⊓ (a− ⊔ a+) ⪯ e, which holds just in case a−, a+ ⪯ e and a− ⊔ a+ ⪯ e

both hold. And a− ⊔ a+ ⪯ e is guaranteed by Containment, which holds
in all conic models. Hence, a−, a+ ⪯ e if and only if (a ∧ ¬a)− ⪯ e. And
as we have seen above, a−, a+ ⪯ e means that we can always apply Cut to
bearers of the content a. Similarly, supposing Containment, Cut holds in the
underlying implication relation just in case the role inclusion (a∨¬a)+ ⪯ e

holds. For, (a ∨ ¬a)+ ⪯ e if and only if a+ ⊓ a− ⊓ (a+ ⊔ a−) ⪯ e. By the
previous reasoning, it follows that (a∨¬a)+ ⪯ emeans that we can always
apply Cut to bearers of the content a.

It might seem surprising that what looks like a truth-value glut in LP
shows up as a failure of Cut in implication-space semantics, and similarly
for what looks like a truth-value gap in K3. Why is that? The technical
answer is this: Given our connectives and Containment, the roles (a∨¬a)+
and (a ∧ ¬a)− and a− ⊓ a+ are all equivalent. This means that, withJAK = a, we can always substitute, salva consequentia, A ∨ ¬A as a
premise in an implication for A ∧ ¬A as a conclusion, and the other way
around. And we can replace either one of them, salva consequentia, by
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two implications, which are otherwise the same, with A being a premise
in one implication and A being a conclusion in the other implication. So,

Γ, A ∨ ¬A ∼M ∆ just in case Γ ∼
M

A ∧ ¬A, ∆ just in case Γ ∼
M

A, ∆

and Γ, A ∼
M

∆ both hold. Hence, we can drop A ∨ ¬A as a premise or,
equivalently, A∧¬A as a conclusion in an implication, salva consequentia,
just in case we can apply Cut to two implications that are like the one
with which we started except that A figures as a premise in one and as a
conclusion in the other.

When we interpret this situation in terms of normative bilateralism, we
can say that there is a sentence, A, that can neither be accepted nor rejected,
in a given position, so that Cut fails, just in case, in that position, one can
neither reject A ∧ ¬A nor accept A ∨ ¬A. But if we cannot reject A ∧ ¬A,
then it can seem that we must accept A and also accept ¬A. And this seems
to commit us to saying that A is true and also false. And if we cannot accept
A ∨ ¬A, then it seems that we must reject A and also reject ¬A. And this
seems to commit us to saying that A is neither true nor false.

When we interpret the situation in terms of truth-maker theory, we can
say that there is a sentence, A, such that neither one of its truth-makers nor
one of its falsity-makers can be fused with a given state into a state that is
possible, just in case neither a falsity-maker of A ∧ ¬A nor a truth-maker
of A ∨ ¬A can be fused with the given state into a state that is possible.
But if A ∧ ¬A cannot be made false, then it can seem that neither A nor
¬A can be made false, so that it seems that A and ¬A must both be made
true. And this seems to commit us to saying that A is true and also false.
And if A ∨ ¬A cannot be made true, then it seems that neither A nor ¬A
can be made true. And this seems to commit us to saying that A is neither
true nor false.

Returning to the high level of abstraction of this chapter, the general
interpretation is that if (a ∧ ¬a)− is ruled out, then a− and (¬a)− are
both ruled out. Thus, a+ and (¬a)+ seem forced upon us, which yields
the impression of a truth-value glut. And if (a∨¬a)+ is ruled out, then a+

and (¬a)+ are both ruled out. And this yields the impression of a truth-
value gap. Given the role equivalences above, we know that these situations
arise just in case the role a− ⊓ a+ is ruled out, which shows up as a failure
of Cut.

To sum up, the impression that there are truth-value gluts or truth-
value gaps can be understood as arising from failures of Cut, when
we think about implicational role inclusions as relations that preserve
some designated truth-value. From the perspective of implication-space
semantics, however, this impression of truth-value gluts or gaps is merely
a reflection of the fact that LP codifies the relation of conclusory role
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inclusion in all conic models, and K3 codifies the converse relation of
premisory role inclusion in all conic models.

A comment on our recovery of ST and TS may also be in order. We
can see from the proposition above that ST and TS are not dual logics,
like LP and K3, which result from each other by flipping the sides of the
role inclusions and switching premisory to conclusory roles, and the other
way around, for the whole sets of premises and conclusions combined by
adjunction. However, ST and TSwould be dual logics if the premisory role
of e was the conclusory role of ⋆ and the other way around. Now, the
premisory role of e is not the conclusory role of ⋆. Rather, e and ⋆ are the
minimal and the maximal element of the set-theoretic inclusion lattice of
subsets of S.22 This suggests that we can think of the relation between ST
and TS in terms of the inversion of the ordering of a lattice. However, we
will not develop this idea here.

For our purposes, it suffices to note that, in implication-space semantics,
the consequence relations of ST andTS emerge as relations of implicational
role inclusion in conic models. The general fact that underlies this
connection, as well as the connection between implication-space semantics
and LP and K3, is that there is an ST-counterexample-preserving bijection
between strong Kleene interpretations and conic implication-space models.

5.5.3 Logics of Content and Metaphysics

In this subsection, we want to add a final point to our demonstration of the
power of implication-space semantics to recover and connect extant logical
theories. There is a family of logics that have been considered as logics of
content or logics of factual equivalence (Fine, 2016; Correia, 2016).23 We
now show how some of these logics are related to identity and inclusions
of contents considered as implicational roles.

We begin by looking at a logic that Correia (2016) suggested as a “logic
of factual equivalence.” Correia is interested in determining when two
sentences, A and B, describe the same facts or states in virtue of their
(propositional) logical form, written A ≈ B. Correia offers a Hilbert-
style axiomatic system for such statements, and we use “Correia’s logic”
for this logic. Correia’s is a proper fragment of Angell’s (1989; 1977)
logic of analytic entailment, which Fine (2016) advocates as a logic of
content. Correia’s logic differs from Angell’s logic in that it doesn’t validate
the distributive principle according to which A ∨ (B ∧ C) is equivalent to
(A ∨ B) ∧ (A ∨ C). However, Correia’s logic does include distribution of
conjunction over disjunction as an axiom (using Correia’s labels).

A10 A ∧ (B ∨ C) ≈ (A ∧ B) ∨ (A ∧ C)
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We get Angell’s first-degree system for analytic equivalence by adding the
distribution principle that Correia rejects as another axiom, namely:

A11 A ∨ (B ∧ C) ≈ (A ∨ B) ∧ (A ∨ C)

If we add A11 but not A10, we get what Correia calls his “dual” logic.
We write ⊢c A ≈ B to say that A ≈ B is a theorem of Correia’s logic, and
⊢dc A ≈ B to say that A ≈ B is a theorem of Correia’s dual logic. We can
recover both Correia’s logic and his dual logic in terms of implicational role
inclusions, indeed in terms of role identities, thereby giving a precise sense
to their claims to be logics of content.

Proposition 97. If the only constraint on models is that they obey
the semantic clauses for the implication-space semantics of NMMS
(Definition 70), then Correia’s logic and his dual system are related to
implicational roles as follows. For all JAK = a and JBK = b:
⊢c A ≈ B if and only if, in all models, a+ ⪯⪰ b+, and so a+ = b+.
⊢dc A ≈ B if and only if, in all models, a− ⪯⪰ b−, and so a− = b−.

(Appendix, Proposition 143)

We can also express this in terms of content identity.

Proposition 98. The contents JAK = a and JBK = b are identical, and so
a ⋑⋐ b, in all implication-space models, if and only if ⊢c A ≈ B and
⊢dc A ≈ B.

So while mutual implication in LP and also K3 ensures that two bearers
have the same content in all conic models, a more demanding connection
is needed when we include nonconic models. And this more demanding
connection is that the two bearers must be equivalent in Correia’s logic
and Correia’s dual logic. In other words, we get Correia’s logic from K3 as
a logic of premise substitution salva consequentia if, firstly, we require that
substitutions must be possible in both directions and, secondly, we disallow
substitutions that might not be salva consequentia in nonconic models. And
we get Correia’s dual logic from LP in the same way.

Without entering into any debate on these issues, we can note that role
inclusions can be used to recover some notions that are currently popular
in so-called “analytic metaphysics.” Correia and Skiles (2019) offer, for
instance, accounts of gounding, essence, and generalized identity on the
basis of Correia’s logic. When we take the versions of their notions that
apply at the sentential level, we can translate them into implicational
role inclusions or identities. According to Correia and Skiles a generalized
identity claim of the form “For it to be the case that A is for it to be the
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case that B” holds in virtue of logical form just in case ⊢c A ≈ B. Hence,
this notion coincides with the identity of premisory roles of the bearers A
and B. Regarding essence, Correia and Skiles’s notion of full factual essence
turns out to coincide also with identity of premisory implicational roles, as
they hold that a generalized identity claim connecting two sentences holds
just in case the facts stated by those sentences are each other’s full essence. It
turns out that a fact is part of the essence of another fact, in their terms, just
in case some adjunction of the premisory role of the sentence that states the
first fact with another role is identical to the premisory role of a sentence
that states the second fact.

Fact 99. Factual Essence: Its being the case that A is what it is for it to be
the case that B in full, in virtue of truth-functional logical form (Correia
and Skiles, 2019, 651), if and only if, for JAK = a and JBK = b, we have
a+ = b+ in all implication-space models. And its being the case that A is
in part what it is for it to be the case that B, in virtue of truth-functional
logical form (Correia and Skiles, 2019, 651), if and only if , for JAK = a andJBK = b, there is some c+ such that a+ ⊔ c+ = b+ in all implication-space
models. (Appendix, Fact 144)

If we wanted to include more than just those factual essence claims that
hold in virtue of logical form, we could restrict ourselves to a subset of all
implication-space models. Requiring models to respect the corresponding
identities of premisory roles will then ensure that the desired claims about
essences are true in all these models. We can translate the notion of
grounding in a similar way.

Fact 100. Strict Full Grounding: Its being the case that A1, ..., An makes
it the case that B, in virtue of truth-functional logical form (Correia and
Skiles, 2019, 655), if and only if, in all implication-space models, forJAiK = ai and JBK = b, (i) for some JCK = c, we have (a+1 ⊔ ...⊔ a+n )⊓ c+ ⊓
(a+1 ⊔ ... ⊔ a+n ⊔ c+) ⪯⪰ b+ and (ii) ∀1 ≤ i ≤ n there are no JDK = d andJEK = e such that (b+ ⊔ d

+) ⊓ e+ ⊓ (b+ ⊔ d
+ ⊔ e+) ⪯⪰ a+i . (Appendix,

Fact 145)

Recently, Elgin (2021) has complained that Correia and Skiles’s notion
of generalized identity, in effect, only considers truth-makers and does not
take falsity-makers into account. Elgin suggests that a generalized identity
statement connecting two sentences is true just in case the two sentences
have the same truth-makers and also the same falsity-makers. Elgin offers
an axiomatic system for generalized identity statements that hold merely in
virtue of logical form.24 It is easy to see that Elgin’s notion can be translated
into implication-space semantics as follows:
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Fact 101. A sentence of the form “For it to be the case that A is for it to
be the case that B” is true in virtue of logical form, in the sense of Elgin
(2021, sec 4), if and only if, for JAK = a and JBK = b, we have a = b, and
so a ⋑⋐ b, in all implication space models.

So we can see that, from the perspective of implication-space semantics,
Elgin’s notion of generalized identity coincides with sameness of content.
It coincides with substitutability salva consequentia as premises and as
conclusions in all models, and so merely in virtue of our semantic clauses
for the logical vocabulary.

Our aim here is not to do justice to the debates in metaphysics that are
related to the notions that we just recovered in implication-space semantics.
Rather, we want to point out that these notions are isomorphic to notions
that we can explain in terms of inclusion relations among implicational
roles and, hence, ultimately in terms of substitution salva consequentia
of bearers in implications, that is, in reason relations. In other words, we
can introduce isomorphic notions by appealing just to substitutability salva
consequentia in reason relations.

5.5.4 Nonlogical Role Inclusions

We have so far used implicational-role inclusions only to capture logical
relations and concepts, namely familiar logics and (analogues of) concepts
from analytic metaphysics. We want to end this chapter by considering an
example of the possibility of codifying nonlogical concepts in implication-
space semantics. In particular, we want to show how (a variant of)
a recent inferentialist theory of predicates, due to Kai Tanter (2021),
can be captured by implicational-role inclusions. For this subsection, we
accordingly briefly lift the general restriction of our considerations to just
the sentential level, and look at subsentential expressions. However, we will
not consider quantifiers, and simply include schematic letters for singular
terms to talk about open sentences.

Tanter (2021) offers an account of three very general kinds of conceptual
connections, and he shows how to codify conceptual connections of these
kinds in a sequent calculus. The three kinds of conceptual connections are,
in our terminology:

1. Conceptual equivalence: F and G are such that, in virtue of the
meanings of F and G, something is F if and only if it is G.

2. Species-genus relation: F1, ..., Fn and G are such that, in virtue of their
meanings, being Fj is incompatible with being Fk for all k ̸= j, and
being any Fj is sufficient for being G.
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3. Property-cluster relation: F and G1, ..., Gm are such that, in virtue
of their meanings, being F is sufficient to be Gi for every i, and if
something has all the properties G1, ..., Gm, then it is F.

These three kinds of conceptual relations seem indeed pretty fundamental
and powerful. These are the kinds of relation that allow us to build a
Porphyrian tree, and do so with quite a bit of sophistication. We can,
for example, codify the fact that, in virtue of the meanings of the terms,
something is a computer program just in case it is a computer application.
Using the second relation, we can codify that, in virtue of the meanings of
the terms (let us assume), bacteria, archaea, and eukaryota are the most
general species—namely the domains—of the genus of living beings. And
the third kind of relations allows us to codify, in virtue of the meanings of
the terms (let us assume), that something is a mammal just in case it is an
animal and has hair. Inferential relations of these sorts are ubiquitous in
ordinary language (colors, shapes, places...) and have accordingly loomed
large in the history of thinking about the structure of concepts and reality,
at least from Porphyry’s Isagoge up through Linnaean taxonomy.

Tanter (2021) gives sequent rules for each of these three cases. We
can formulate adjusted and slightly changed versions25 of these rules,
letting ν be schematic for singular terms and using double-lines to say that
the sequent rule applies in both directions, so that one can not only infer the
bottom sequent from the top sequents but also any top sequent from the
bottom sequent. For conceptual equivalence the sequent rules are:

Γ, Fν � ∆
G/F-L

Γ, Gν � ∆
Γ � Fν, ∆

G/F-R
Γ � Gν, ∆

This obviously ensures that F and G have the same premisory and
conclusory implicational roles. So, we can formulate this in terms of
implicational role inclusion as follows, using typewriter font for roles and
superscripts for marking premisory and conclusory roles (with plus and
minus, respectively):

G/F-L: Fν+ ⪯⪰ Gν+

G/F-R: Fν− ⪯⪰ Gν−

This says that, for all instances of these schematic sentences, the premisory
roles of Fν and Gν include each other. And the same holds for their
conclusory roles. Since mutual inclusion of implicational roles implies their
identity, we could also express this as: Fν+ = Gν+ and Fν− = Gν−. If we
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used single-line sequent rules, then the inclusion relations might hold in
only one direction.

The rules for the Species-Genus relation are as follows, where Fi and Fj
stand for arbitrary but distinct Fs such that the sequence F1, ..., Fi is like
F1, ..., Fn but without Fj.

Γ � F1ν, ..., Fnν, ∆
G/FR

Γ � Gν, ∆

Γ, F1ν � ∆ · · · Γ, Fnν � ∆
G/FL

Γ, Gν � ∆

Γ � Gν, ∆ Γ, F1ν � ∆ · · · Γ, Fiν � ∆
RFj

Γ � Fjν, ∆

Γ, Gν � F1ν, ..., Fiν, ∆
LFj

Γ, Fjν � ∆

G/FR says that it follows that something falls under one or another of
the species just in case it follows that it falls under the genus. G/FL says
that something follows from an object falling under any species of a genus
just in case it follows from the object falling under that genus. Note that
G/FR and G/FL are what you would expect if Gν is the disjunction of all
the Fkν. We can express these rules in implicational role inclusion terms as
follows:

G/FR: F1ν− ⊔ ... ⊔ Fnν− ⪯⪰ Gν−

G/FL: F1ν+ ⊓ ... ⊓ Fnν+ ⪯⪰ Gν+

The rule LFj says that all the species are mutually exclusive: It follows
from something falling under the genus, given premises Γ, that either it
falls under one of the species F1, ..., Fi or one of the sentences ∆ holds if
and only if it follows from it falling under the remaining species Fj, given
premises Γ, that one of the sentences ∆ holds. Notice that RFj and LFj are
what you would expect if Fj is equivalent to Gν ∧¬F1ν ∧ ...∧¬Fiν. We can
formulate these rules in role inclusion terms as follows:

RFj: Gν− ⊓ F1ν+ ⊓ ... ⊓ Fiν+ ⪯⪰ Fjν−

LFj: Gν+ ⊔ F1ν− ⊔ ... ⊔ Fiν− ⪯⪰ Fjν+

The rules for the Property-Cluster relation are the following:

Γ � G1ν, ∆ · · · Γ � Gmν, ∆
F/GR

Γ � Fν, ∆
Γ, G1ν, ..., Gmν � ∆

F/GL
Γ, Fν � ∆

These are the rules one would expect if one wanted to say that Fν has
the same inferential role as G1ν ∧ ... ∧ Gmν. For F/GL corresponds to the
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usual conjunction left-rule and its inverse, and F/GR corresponds to the
usual conjunction right-rule and its inverse. We can formulate these rules
in role inclusion terms as follows:

F/GR: G1ν− ⊓ ... ⊓ Gmν− ⪯⪰ Fν−

F/GL: G1ν+ ⊔ ... ⊔ Gmν+ ⪯⪰ Fν+

One can read the role inclusions as holding de jure, and then they say, for
example, that if you want to have concepts of genus and species, then you
need to define these concepts as given by the appropriate role inclusions.
But we can also read the role inclusions, as it were, a posteriori or de facto,
and then they say, for example, that if you find concepts whose roles are
related in the given ways, then you have found yourself a genus and some
species concepts. The formalism is, of course, neutral on which of these
readings is more appropriate (if either).

Like the sequent rules and the implication-role inclusions for logical
connectives, we can interpret the sequent rules for these conceptual
connections in truth-maker theory, and doing so might add a potentially
illuminating perspective. Interpreted in truth-maker theory, the rule G/F-R
says that all instantiations for ν of Fν and Gν have the same falsity-makers.
G/F-L says that, for every instantiation of ν, Fν and Gν have the same truth-
makers. So given these rules, Fν and Gν always represent the same worldly
proposition.

Turning to the rules for species-genus relations, the rule G/FR says that,
for every instantiation of ν, a falsity-maker of Gν is a fusion of falsity-
makers of each of F1ν, ..., Fnν. We could express this by saying that to fail
to fall under a genus is to fail to fall under any of its species. The rule G/FL
says that, for every instantiation of ν, the truth-makers of Gν are the union
of truth-makers for any of F1ν, ..., Fnν. We could express this by saying that
to fall under a genus is to fall under one of its species. The RFj rule says that,
for every instantiation of ν, a falsity-maker of Fjν is either a falsity maker
of Gν or a truth-maker of one of the F1ν, ..., Fiν. We could express this by
saying that to fail to fall under a particular species is either to fail to fall
under the genus or to belong to one of the other species under that genus.
The LFj rule says that, for every instantiation of ν, a truth-maker of Fjν is a
fusion of a truth-maker of Gν and falsity-makers for each of the F1ν, ..., Fiν.
We could express that by saying that to fall under a particular species is to
fall under the genus and fail to fall under any of its other species.

Finally, regarding the rules for property-cluster relations, the rule F/GR
says that, for every instantiation of ν, a falsity-maker of Fν is anything that
is a falsity-maker for one of G1ν, ..., Gmν. We could express this by saying
that to fail to fall under a property-cluster concept is for something to fail to
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have one (or more) of the properties in the cluster that defined the property-
cluster concept. And the rule F/GL says that, for every instantiation of ν, a
truth-maker of Fν is a fusion of truth-makers for each of the G1ν, ..., Gmν.
We could express that by saying that to fall under a property-cluster
concept is to have all the properties in the cluster.

To sum up, the metalanguage of implicational-role inclusions allows us
to formulate what reason relations must be like for some concepts in these
reason relations to stand in the relations of conceptual equivalence, the
species-genus relation, or the property-cluster relation. The correspondence
between implication-space semantics, sequent calculi, and truth-maker
theory applies to these cases in the same way in which it applies to
logical vocabulary. This illustrates how implication-space semantics can
codify the kind of chain of being familiar since Porphyry’s Isagoge, at
least until Linnaean taxonomy, in an abstract metalanguage of reason
relations that captures the structure that is shared between more concrete
characterizations of reason relations in (the right kind of) pragmatic-
normative and semantic-representationalist metavocabularies.

5.6 Conclusion

In this chapter, we explicated reason relations in a metavocabulary
of implicational roles. This explication of reason relations is intrinsic
because it does not appeal to anything that is not already given in
the reason relations themselves. In particular, it does not appeal to
norms governing discursive acts or modal relations among worldly states.
Rather, implication-space semantics takes implication relations among
some particular items and abstracts from them the implicational role of
these items. The pragmatic-normative account of reason relations in terms
of the sequent calculus NMMS from Chapter Three and the semantic-re-
presentationalist account in terms of truth-makers from Chapter Four can
both be interpreted in implication-space semantics. Indeed, we can use the
same implicational roles to interpret the role of a sentence in the prag-
matic-normative account and to interpret the worldly proposition that the
sentence represents in the semantic-representationalist account. We have
thus arrived at an abstract theory of the rational forms that are shared by
sentences and the worldly propositions that they represent: a theory that
abstracts away from the different ways in which the rational form can be
realized in the matter of discursive acts or the matter of worldly states. We
have arrived at a pure theory of rational forms.

Let us rehearse the main points in the development of implication-
space semantics. We start with a space of bearers of implicational roles
and an implication relation between sets of these bearers. We call this an
implication frame. We then consider under which additions a candidate
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implication would turn into a good implication, or remain good (if it
already is a good implication). We call the set of these additions the “range
of subjunctive robustness” of the candidate implication. The implicational
role of an implication is then the class of (sets of) implications with the
same range of subjunctive robustness. The premisory role of a bearer is the
role of the implication in which the bearer occurs only as a premise. The
conclusory role of a bearer is the role of the implication in which the bearer
occurs only as a conclusion. And the implicational role of a bearer is the
pair of its premisory and its conclusory roles.

Any pair that could be the implicational role of a bearer is a conceptual
content. And we can interpret languages by assigning to each sentence
of the language such a conceptual content. A model is a set of contents
that interpret the sentences of a given language. And a model-theoretic
implication holds, in a model, just in case all implications in the role of the
implication are good implications (in the implication frame of the contents
of themodel). Finally, a model-theoretic implication holds in a set of models
if it holds in each of the models.

The mathematical structure that is necessary and sufficient to define an
implication frame is a commutative monoid, in which themonoid set is a set
of pairs, together with a bipartition of the monoid set. The elements of the
monoid set are candidate implications, and the operation on them allows us
to combine implications with each other. Ranges of subjunctive robustness
correspond to the set of candidate implications that one can combine with a
target implication so that the result is in the particular subset of the monoid
set. Hence, the fundamental structure of reason relations is the structure of
a commutative monoid in which the monoid set is a set of pairs, together
with a partition of the monoid set.

We define the implicational roles of logically complex sentences in terms
of the implicational roles of their constituent sentences. And we have
shown that if we define the connectives in a particular way, and we look
only at implication-space models in which the material implications of
some base B hold, then NMMSB is sound and complete with respect to
the consequence relation of implication-space semantics over the set of
these models, even if the reason relations of the base are radically open-
structured. If we define the connectives in other ways and allow for failures
of Contraction, we can captureNMMS/ctr

B andmultiplicative additive linear
logic in implication-space semantics.

Finally, we can define inclusion relations among implicational roles by
saying that one role includes another if the range of subjunctive robustness
of the first role is a subset of the range of subjunctive robustness of the
second role. This notion of implicational role inclusion allows us to recover
within the framework of implication-space semantics all of: the logic of
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paradox, strong Kleene logic, strict-tolerant logic, tolerant-strict logic, and
several relations and notions from analytic metaphysics.

Thus, once we reach the level of pure rational forms, all the familiar
logics and notions just mentioned fall into place as particular aspects
or variations on relations among these rational forms—that is, relations
among implicational roles. For instance, the ideas of truth-value gluts and
gaps and the ideas of factual equivalence, essence, and grounding can all be
understood in terms of implicational role inclusions. And the connectives
of linear logic can also be defined in terms of implicational roles.

We have shown how one can use implication-space semantics to
formulate a broad variety of familiar logics and formal theories more
generally. We hypothesize, however, that there are many more such
theories, and that one can extend and generalize our results in many
directions. One promising project is to extend implication-space semantics
to cover more logical vocabulary, such as quantifiers, standard modal
operators, and other kinds of conditionals. Another is to investigate where
and how the connections between implication-space semantics and the
sequent calculus and truth-maker theory may break down. Yet another is
to recover further familiar logics in the framework of implicational-role
inclusions, with Angell’s logic of analytic contaiment, the logic of first-
degree entailment, and connexive logics suggesting themselves as proximal
targets. These and many similar projects seem to us to be tractable and
potentially fruitful research projects, which we take to support the idea
that implication-space semantics can provide the tools for moving many
debates forward.

Implication-space semantics is a formal inferentialist semantics. For
according to implication-space semantics, the contents of sentences are
the roles they play in implications, that is, the roles they play in reason
relations. The semantic clauses for the logical connectives show in what
sense such an inferentialist semantic theory is compositional, namely in
the sense that the implicational roles of logically complex sentences are
defined in terms of the implicational roles of their constituents. The
semantic theory is, nevertheless, holistic because the role of an implication
is defined in terms of which additions of further premises and conclusions
would yield a good implication. In this way, the implicational role
of an implication points beyond the implication’s constituents and to
other implications. Hence, the implication-space semantics of the logical
connectives gives us a concrete example of a semantics that is holistic but
also compositional. Moreover, implication-space semantics shows how an
inferentialist semantics can capture open reason relations in a formally
rigorous way, thus codifying substructural consequence relations. Finally,
the many connections between implication-space semantics and extant
logical and metaphysical theories suggest that implication-space semantics
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may serve as a unifying framework for many different approaches, from
normative bilateralism, to truth-maker theory, three-valued logics, linear
logic, the logics of grounding and essence and generalized identity. We
take this expressive flexibility and power to be indirect evidence that
implication-space semantics captures the fundamental structure of reason
relations and, hence, the fundamental structure of conceptual content.

5.7 Appendix

5.7.1 Roles and Ranges of Subjunctive Robustness

We start by listing some simple propositions about roles and ranges of
subjunctive robustness, which are useful when one is trying to find one’s
way into implication-space semantics.

Proposition 102. If α = RSR(RSR(α)) and β = RSR(RSR(β)) and α and β
both are members of some role R, then α = β.

Proof. Clearly, if α = RSR(RSR(α)) and β = RSR(RSR(β)) and RSR(α) =
RSR(β), then α = β. But, by the definition of roles, if α and β both are
members of some role R, then RSR(α) = RSR(β). ■

Proposition 103. RSR(R(α)) = RSR(α).

Proof. By the definition of implicational roles, ∀x ∈ R(α) (RSR(α) =
RSR(x)). But RSR(X) =

∩
x∈X

RSR(x) and, hence, RSR(R(α)) = RSR(x), for

any x ∈ R(α). So RSR(α) = RSR(R(α)). ■

Proposition 104. R(R(α)) = R(α).

Proof. By the definition of roles, R(R(α)) is the set {x | RSR(R(α)) =
RSR(x)}. By Proposition 103, this is the set {x | RSR(α) = RSR(x)}. But
that is R(α). ■

5.7.2 Implication-Space Semantics and NMMS

We now move on to proving that the results of taking an adjunction or
symjunction of two implicational roles is independent of the way in which
these roles are represented. That is, if two items have the same implicational
roles, then we do not get different results for the two items when we
compute adjunctions and symjunctions of their roles.

Proposition 105. If R(F) = R(F′), then R(F) ⊔R(G) = R(F′) ⊔R(G).
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Proof. Suppose that R(F) = R(F′). To show that R(F) ⊔ R(G) =
R(F′)⊔R(G) it suffices to show that RSR({⟨ f + ∪ g+, f − ∪ g−⟩ | ⟨ f +, f −⟩ ∈
F, ⟨g+, g−⟩ ∈ G}) is the same as RSR({⟨ f ′+ ∪ g+, f ′− ∪ g−⟩ | ⟨ f ′+, f ′−⟩ ∈
F′, ⟨g+, g−⟩ ∈ G}). So, suppose that ⟨x, y⟩ ∈ RSR(R(F) ⊔ R(G)). Then,
for every ⟨g+, g−⟩ ∈ G, we have ⟨x ∪ g+, y ∪ g−⟩ ∈ RSR(F). Since
RSR(F) = RSR(F′), for every ⟨g+, g−⟩ ∈ G, we have ⟨x ∪ g+, y ∪ g−⟩ ∈
RSR(F′). So ⟨x, y⟩ ∈ RSR(R(F′) ⊔R(G)). And the same reasoning works
in the other direction. Therefore, ⟨x, y⟩ ∈ RSR(R(F) ⊔R(G)) just in case
⟨x, y⟩ ∈ RSR(R(F′) ⊔R(G)). So R(F) ⊔R(G) = R(F′) ⊔R(G). ■

Proposition 106. If R(F) = R(F′), then R(F) ⊓R(G) = R(F′) ⊓R(G).

Proof. If R(F) = R(F′), then F′ ≈ F. Now, R(F) ⊓R(G) = R(F ∪ G),
and the latter is the set of sets of implications such that each of the sets
has the same range of subjunctive robustness as F ∪ G. So it suffices to
show that, for all ⟨X, Y⟩, we have ∀ ⟨Γ, ∆⟩ ∈ F ∪ G (⟨Γ ∪ X, ∆ ∪ Y⟩ ∈ I) iff
∀ ⟨Γ′, ∆′⟩ ∈ F′ ∪G (⟨Γ′ ∪ X, ∆′ ∪ Y⟩ ∈ I). This holds because F′ ≈ F entails
that ∀ ⟨Γ, ∆⟩ ∈ F (⟨Γ ∪ X, ∆ ∪ Y⟩ ∈ I) iff ∀ ⟨Γ′, ∆′⟩ ∈ F′ (⟨Γ′ ∪ X, ∆′ ∪ Y⟩ ∈
I). ■

The following lemma about the connection between adjunction and
symjunction will prove useful below.

Lemma 107.
∪
((a⊓ b) ⊔ c) ⊆ I just in case

∪
(a⊔ c) ⊆ I and

∪
(b⊔ c) ⊆

I.

Proof. It follows from the definition of symjunction that RSR(a⊓ b) is the
intersection of RSR(a) and RSR(b). Hence, for all c ∈ c, c ⊆ RSR(a ⊓ b)
if and only if c ⊆ RSR(a) and c ⊆ RSR(b). But, in general, for any role
z, we have

∪
(z ⊔ c) ⊆ I just in case, for all c ∈ c, c ⊆ RSR(z). So,∪

((a ⊓ b) ⊔ c) ⊆ I just in case, for all c ∈ c, c ⊆ RSR(a ⊓ b). And the
latter holds just in case, for all c ∈ c, c ⊆ RSR(a) and c ⊆ RSR(b). The
latter holds if and only if

∪
(a⊔ c) ⊆ I and

∪
(b⊔ c) ⊆ I. ■

We now turn to the relation between implication-space semantics and
the sequent calculus NMMS from Chapter Three.

Proposition 108. If there is an NMMS rule application with top sequents
Γ1 � ∆1, ..., Γn � ∆n and bottom sequent Γ0 � ∆0, then, for all implication–

space models, Γ0 ∼
M

∆0 holds just in case all of Γ1 ∼
M

∆1 and ... and

Γn∼
M

∆n hold.
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Proof. We do only the cases for negation and the conditional, as
conjunction and disjunction can be defined in terms of negation and the
conditional (and also the proofs work analogously for them). We take each
of the rules in turn, always letting JAK = ⟨a+, a−⟩ and JBK = ⟨b+, b−⟩ andJΓK = P = {p0, ..., pn} and J∆K = C = {c0, ..., cm}.

[L¬] concludes Γ,¬A � ∆ from Γ � A, ∆. By our semantic clauses for

negation, J¬AK = ⟨(¬a)+, (¬a)−⟩ = ⟨a−, a+⟩. Suppose that Γ ∼
M

A, ∆

and, hence, P ∼ a, C. That is,
∪
(

n
⊔

i=0
p+i ⊔

m
⊔

j=0
c−j ⊔ a−) ⊆ I. But

a− = (¬a)+. So, ∪(
n
⊔

i=0
p+i ⊔

m
⊔

j=0
c−j ⊔ (¬a)+) ⊆ I. Hence, P,¬a ∼ C and,

so, Γ,¬A∼
M

∆. And the same reasoning works in the reverse direction as
well.

[R¬] concludes Γ � ¬A, ∆ from Γ, A � ∆. Suppose that Γ, A ∼
M

∆ and,

hence, P, a ∼ C. That is,
∪
(

n
⊔

i=0
p+i ⊔ a+⊔

m
⊔

j=0
c−j ) ⊆ I. But a+ = (¬a)−. So,∪

(
n
⊔

i=0
p+i ⊔ (¬a)−⊔

m
⊔

j=0
c−j ) ⊆ I. Hence, P ∼ ¬a, C and, so, Γ∼

M
¬A, ∆.

And the same reasoning works in the reverse direction as well.
[L→] concludes Γ, A→B � ∆ from Γ � ∆, A and Γ, B � ∆ and

Γ, B � ∆, A. By our semantic clauses for the conditional JA → BK =
⟨(a → b)+, (a → b)−⟩ = ⟨a− ⊓ b+ ⊓ (a− ⊔ b+), a+ ⊔ b−⟩. Suppose that

Γ, A → B ∼
M

∆ and, hence, P, a → b ∼ C. That is,
∪
(

n
⊔

i=0
p+i ⊔ (a− ⊓

b+ ⊓ (a− ⊔ b+))⊔
m
⊔

j=0
c−j ) ⊆ I. By Lemma 107, that holds just in case∪

(
n
⊔

i=0
p+i ⊔ a−⊔

m
⊔

j=0
c−j ) ⊆ I and

∪
(

n
⊔

i=0
p+i ⊔ b+⊔

m
⊔

j=0
c−j ) ⊆ I and∪

(
n
⊔

i=0
p+i ⊔ a− ⊔ b+⊔

m
⊔

j=0
c−j ) ⊆ I. Which holds just in case P ∼ a, C and

P, b ∼ C and P, b ∼ a, C. So, Γ∼
M

A, ∆ and Γ, B∼
M

∆ and Γ, B∼
M

A, ∆.
And the same reasoning works in the reverse direction as well.

[R→] concludes Γ � A → B, ∆ from Γ, A � B, ∆. Suppose that Γ, A ∼
M

B, ∆ and, hence, P, a ∼ b, C. That is,
∪
(

n
⊔

i=0
p+i ⊔ a+ ⊔ b−⊔

m
⊔

j=0
c−j ) ⊆ I.

But a+ ⊔ b− = (a → b)−. So,
∪
(

n
⊔

i=0
p+i ⊔ (a → b)−⊔

m
⊔

j=0
c−j ) ⊆ I. Hence,

P ∼ a → b, C and, so, Γ∼
M

A → B, ∆. And the same reasoning works in
the reverse direction as well. ■

As a matter of terminology we let b be the set of models that are fit for
the base B (see the main text for the definition of fitness of a model for a
base).
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Theorem 109. For any base B =
⟨
LB, ∼

B

⟩
and sentences Γ, ∆ ⊆ L in the

logically extended lexicon of the base, Γ ∼b ∆ if and only if Γ � ∆ is derivable
in NMMSB.

Proof. By Proposition 108, implications in implication-space models are
closed under the rules of NMMS. And if Γ ∼

B
∆ in the base consequence

relation, then, by definition, Γ ∼ ∆ holds in all models fit for B. So if

Γ � ∆ is derivable in NMMSB, then Γ ∼b ∆. For the other direction, if Γ � ∆
is not derivable in NMMSB, then a proof-search on Γ � ∆ yields atomic
sequents that are not in the base consequence relation ∼

B
. We can construct

an implication-space b-model in which these sequents fail. In fact, themodel

with the implication frame
⟨
LB, ∼

B

⟩
and the interpretation JϕKM =R(ϕ)

for all ϕ ∈ L can serve as a counterexample. ■

5.7.3 Implication-Space Semantics and Truth-Maker Theory

We now turn to the relation between implication-space semantics and the
truth-maker theory from Chapter Four.

Theorem 110. Let M be the implication-space model defined by the
implication frame, ⟨B, I⋄⟩, of the modalized state space ⟨S, S3,⊑⟩ and the
interpretation function such that JxKM = R(x) for all x ∈ B. Then P PI C

holds in the modalized state space if and only if P∼
M

C.

Proof. Let P = {p0, ..., pn} and C = {c0, ..., cm}, and suppose that P PI C
holds in a modalized state space, i.e., any fusion of verifiers for each⟨

p+
i , p−

i

⟩
∈ P and falsifiers for each

⟨
c+j , c−j

⟩
∈ C is an impossible state.

So, by the definition of the implication frame of a modalized state space,
⟨P, C⟩ ∈ I⋄. By the reasoning from the proof of Proposition 74 above,

⟨P, C⟩ ∈ I⋄ if and only if P∼
M

C. ■

Proposition 111. If the implication-space model M and truth-maker

model M′ are parallel, then Γ∼
M

∆ just in case Γ TM ∆ in M′.

Proof. Let M′′ be the model with the same implication frame, ⟨B, I⋄⟩,
as M but an interpretation function that interprets worldly propositions
by themselves, namely the interpretation such that JxKM′′

= R(x) for all
x ∈ B. And let f be a function that takes sets of sentences of L to the sets
of their interpretations in M′. We now show that implications in M and
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M′ both coincide with implications in M′′, thus using M′′ as our “middle
man.”
M and M′′: If JΓKM = J f (Γ)KM′′

and J∆KM = J f (∆)KM′′
, then Γ∼

M
∆

just in case f (Γ)∼
M′′

f (∆). For,M andM′′ differ only in the language and
interpretation function. Since the interpretations ofM andM′ are parallel,JAKM = |A|M

′
= R(A) and so R(|A|M

′
) = R(R(A)). Moreover,

we defined M′′ such that
r
|A|M

′zM′′

= R(|A|M
′
). It is easy to see,

however, that R(A) = R(R(A)) (Proposition 104). Hence, JAKM =

R(|A|M
′
) = J f ({A})KM′′

, which implies that JΓKM = J f (Γ)KM′′
andJ∆KM = J f (∆)KM′′

. Therefore, Γ∼
M

∆ just in case f (Γ)∼
M′′

f (∆).

M′ and M′′: To show that Γ TM ∆ in M′ just in case f (Γ)∼
M′′

f (∆),
we first note that, by Theorem 79, P PI C holds in the modalized state

space of all three models if and only if P∼
M′′

C. Hence, it suffices to note
that JΓKM′

= f (Γ) and J∆KM′
= f (∆) holds by the definition of f . ■

Proposition 112. If there is an implication-space model M such that

∼M= X, then there is a truth-maker model M′ such that TM = X.

Proof. Suppose that there is an implication-space model M such that

∼M = X. The modalized state space of the desired model M′ is the
space ⟨S, S3,⊑⟩ defined as follows: Let S be the set of all pairs such that⟨

ΓAt, ∆At
⟩
with ΓAt and ∆At being sets of atomic sentences of the language,

L, that M interprets. Let
⟨
ΓAt, ∆At

⟩
⊑

⟨
ΘAt, ΛAt

⟩
if and only if ΓAt ⊆ ΘAt

and ΘAt ⊆ ΛAt. Let S3 be the set such that
⟨
ΓAt, ∆At

⟩
∈ S3 if and only

if
⟨
ΓAt, ∆At

⟩
̸∈ X. The interpretation function of M′ is the following: For

all atomic sentences ϕ in L, let |ϕ|+ = {⟨{ϕ}, ∅⟩} and |ϕ|− = {⟨∅, {ϕ}⟩}.
We extend this interpretation of atomic sentences by the usual truth-maker
clauses for the logical vocabulary.

Notice that since fusion is the least upper bound with respect to part-
hood, the fusion of

⟨
ΓAt, ∆At

⟩
and

⟨
ΘAt, ΛAt

⟩
is

⟨
ΓAt ∪ ΘAt, ∆At ∪ ΛAt

⟩
.

Hence,
⟨
ΓAt, ∆At

⟩
̸∈ S3 just in case the fusion of the truth-makers for each

element in ΓAt and the falsity-makers for each element in ∆At is an im-
possible state. Hence, for atomic sentences,

⟨
ΓAt, ∆At

⟩
̸∈ S3 just in case

ΓAt
TM ∆At.

We now consider the semantic clauses. We do just the case for negation
and conjunction, as the other connectives can be defined in terms of
these. We argue by induction on the number of connectives in a candidate
implication.
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Negation: Suppose that Γ∼
M

¬A, ∆. By the clauses of implication-space

semantics this holds if and only if Γ, A ∼
M

∆. Hence, by our induction
hypothesis, Γ, A TM ∆. But by the semantic clauses of truth-maker theory,

this holds just in case Γ TM ¬A, ∆. The case of Γ,¬A∼
M

∆ is analogous.

Conjunction: Suppose that Γ∼
M

A ∧ B, ∆. By the clauses of implication-

space semantics this holds if and only if Γ ∼M A, ∆ and Γ ∼M B, ∆

and Γ ∼
M

A, B, ∆. Hence, by our induction hypothesis, Γ TM A, ∆ and
Γ TM B, ∆ and Γ TM A, B, ∆. But by the semantic clauses of truth-maker
theory, this holds just in case Γ TM A ∧ B, ∆.

Suppose that Γ, A ∧ B ∼M ∆. By the clauses of implication-space

semantics this holds if and only if Γ, A, B ∼
M

∆. Hence, by our induction
hypothesis, Γ, A, B TM ∆. But by the semantic clauses of truth-maker
theory, this holds just in case Γ, A ∧ B TM ∆. ■

Proposition 113. Γ ∼b ∆ just in case Γ TM

B
∆.

Proof. We prove a more general result, namely that if we restrict ourselves,
in both theories, to models in which a given set of implications hold, then
the implications that hold in all these models, in the two theories, coincide.
So, let x ⊆ P(L)×P(L), and consider only implication-space models and
truth-maker models such that, for all ⟨Γ, ∆⟩ ∈ x, Γ ∼x ∆ and Γ TM

x
∆.

The consequence relations of every implication-space model and every
truth-maker model are closed under the rules of NMMS and the inverted
rules, which we collectively call RUL, because the semantic clauses of
these theories are equivalent to RUL (as we have seen above). And if the
consequence relation of every model in a set is closed under a set of rules,
then the intersection of these consequence relations is closed under these
rules. Hence, the consequence relations defined by any sets of models in
both theories are closed under RUL. Let RUL(x) be the closure of a set of
sequents x under RUL. So, for all ⟨Γ, ∆⟩ ∈ RUL(x), Γ ∼x ∆ and Γ TM

x
∆.

For the other direction, suppose that ⟨Γ, ∆⟩ ̸∈ RUL(x). Then we can

construct counterexamples to Γ ∼x ∆ and Γ TM

x
∆, and we can construct

these countermodels in a way that ensures that all the implications in x
hold in them. In fact, the model that includes all and only the implications
in RUL(x) is a counterexample. Therefore, Γ ∼x ∆ if and only if Γ TM

x
∆.

Since restricting our attention to models in which a base consequence
relation holds is a special case of restricting our attention to models in
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which a particular set of implications hold, it follows that Γ ∼b ∆ just in

case Γ TM

B
∆. ■

5.7.4 Implication-Space Semantics for the Noncontractive Variant of NMMS

We now turn to the noncontractive variant of our sequent calculus, namely
NMMS/ctr

B .

Theorem 114. Let B =
⟨
LB, ∼

B

⟩
be a base vocabulary in which

contraction may fail, let b be the set of models that are fit for B, and let

Γ, ∆ ⊆ L. Then Γ ∼b /ctr ∆ if and only if Γ � ∆ is derivable in NMMS/ctr
B .

Proof. Soundness: If Γ � ∆ is derivable in NMMS/ctr
B , then Γ ∼b /ctr ∆. We

argue by induction on the proof height of the derivation of Γ � ∆. Since
all models in b are fit for B, the base case is immediate. For the induction
step, Γ � ∆ comes by one of the operational rules of NMMS/ctr

B . Since the
other connectives can be defined in terms of negation and the conditional in
NMMS/ctr

B , it suffices to consider the rules for negation and the conditional.
Suppose Γ � ∆ is Γ � ¬A, ∆′ and comes by Γ, A � ∆′. By our induction

hypothesis, Γ, A ∼b /ctr ∆′. So for all M ∈ b, labeling G = JΓKM =

{g0, ..., gn} and D′ = J∆′KM = {d0, ..., dm} and a = JAKM, we have

G, a ∼ D, which means that
∪
(a+ ⊔

n
⊔

i=0
g+i ⊔

m
⊔

j=0
d−j ) ⊆ I. Now, by our

semantic clauses, a+ = (¬a)−. Hence,
∪
((¬a)− ⊔

n
⊔

i=0
g+i ⊔

m
⊔

j=0
d−j ) ⊆ I

and, so, G ∼ ¬a, D. Therefore, Γ ∼b /ctr ¬A, ∆′, as desired. The case for the
negation left-rule is analogous.

Suppose that Γ � ∆ is Γ � A→̄B, ∆′ and comes by Γ, A � B, ∆′. By our

induction hypothesis, Γ, A ∼b /ctr B, ∆′. So for all M ∈ b, labeling as before

and b = JBKM, we have G, a ∼ b, D, which means that
∪
(a+ ⊔ b−⊔

n
⊔

i=0

g+i ⊔
m
⊔

j=0
d−j ) ⊆ I. Now, by our semantic clauses, a+ ⊔ b− = (a→̄b)−.

Hence,
∪
((a→̄b)− ⊔

n
⊔

i=0
g+i ⊔

m
⊔

j=0
d−j ) ⊆ I and, so, G ∼ a→̄b, D. Therefore,

Γ ∼b /ctr A→̄B, ∆′, as desired.
Suppose that Γ � ∆ is Γ′, A→̄B � ∆ and comes by Γ′ � A, ∆ and Γ′, B � ∆.

By our induction hypothesis, Γ′ ∼b /ctr A, ∆ and Γ′, B ∼b /ctr ∆. By reasoning
that is analogous to the reasoning in the previous two cases, this implies
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that
∪
(a−⊔

n
⊔

i=0
g+i ⊔

m
⊔

j=0
d−j ) ⊆ I and

∪
(b+⊔

n
⊔

i=0
g+i ⊔

m
⊔

j=0
d−j ) ⊆ I.

By our semantic clauses, a− ⊓ b+ = (a→̄b)+. But, for any x, we have∪
(a− ⊓ b+ ⊔ x) ⊆ I just in case

∪
(a− ⊔ x) ⊆ I and

∪
(b+ ⊔ x) ⊆ I (by

Lemma 107). So, G, a→̄b ∼ D. Therefore, Γ, A→̄B ∼b /ctr ∆′, as desired.
Completeness: Suppose that Γ � ∆ is not derivable in NMMS/ctr

B . Then a
proof-search on Γ � ∆ yields an atomic sequent that is not in B. We can
choose a model, M′ ∈ b, in which these atomic sequents fail, so that if
Θ0 � Π0 is an atomic sequent that results from the proof-search but is not

in B, then Θ0 ≁
M′

/ctr Π0. The latter implies that Γ ≁
M′

/ctr ∆. For, we can
show that if there is a rule-application of NMMS/ctr

B that concludes some
sequent Γ′ � ∆′ and one of the top sequents of this rule-application does not
hold in a model, then Γ′ � ∆′ does not hold in that model. For example, if

Γ, A ≁
M

/ctr ∆′, then Γ ≁
M

/ctr ¬A, ∆′; for if
∪
(a+ ⊔

n
⊔

i=0
g+i ⊔

m
⊔

j=0
d−j ) ̸⊆ I,

then
∪
((¬a)− ⊔

n
⊔

i=0
g+i ⊔

m
⊔

j=0
d−j ) ̸⊆ I. And analogous reasoning applies to

applications of the other rules. Therefore, Γ ≁b /ctr ∆, as desired. ■

5.7.5 Implication-Space Semantics for Multiplicative Additive Linear Logic

We now turn to multiplicative additive linear logic (MALL), and we start
with a formulation of MALL.

Definition 115 (Phase space). A phase space P consists of (i) a commutative
monoid, which is a set P and an operation • defined on its elements,
such that ∀p, q, r ∈ P (p • 1 = 1 • p = p and p • q = q • p and
(p • q) • r = p • (q • r)); and (ii) a set of anti-phases ⊥P.

Definition 116 (Dual). If G ⊆ P, then its dual G⊥ is {p ∈ P | ∀q ∈
G (p • q ∈⊥P)}.

Definition 117 (Fact). A fact is a subset G of P such that G⊥⊥ = G; the
elements of G are called the phases of G; G is valid when 1 ∈ G.

Definition 118 (Connectives). ¬G =d f G⊥; G ⊗ H =d f (G • H)⊥⊥;
GOH =d f (G⊥ • H⊥)⊥; G&H =d f G ∩ H; G ⊕ H =d f (G ∪ H)⊥⊥.

Definition 119. (i) A phase structure, S, for the propositional language
with the connectives above consists in a phase space ⟨P,⊥P⟩ and, for each
propositional letter a, a fact aS of P.
(ii) With each proposition we associate its interpretation, i.e., a fact in P;
the interpretation of A in the structure S is denoted by AS or S(A).
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(iii) A is valid in S if and only if 1 ∈ S(A),
(iv) A is a linear tautology if and only if A is valid in any phase structure
S.

Definition 120 (MALLConsequence (|=LL)). A1, ..., An |=LL B1, ..., Bm if and
only if A⊥

1 O...OA⊥
n OB1O...OBm is a linear tautology.

A couple of lemmas turn out to be useful.

Lemma 121. There is a mapping, f , between implication frames and phase
spaces such that e ∈ RSR(G) if and only if 1 ∈ ( f (G))⊥.

Proof. The following is such amapping, letting G ◦ H =d f {⟨X ∪ Y, Z ∪ W⟩ |
⟨X, Z⟩ ∈ G ⟨Y, W⟩ ∈ H}:

1. f (S) = P
2. f (G ◦ H) = f (G) • f (H)
3. f (e) = 1
4. f (⊥P) = IM

The image of an implication frame under f satisfies the conditions on
phase structures, as it is a commutative monoid with a set of anti-phases.
Under this mapping: f (RSR(· )) = ( f (· ))⊥. For RSR(G) is defined as
{x ∈ S | ∀y ∈ G (x ◦ y ∈ I)}, and the image of this set under f is
{x ∈ P | ∀y ∈ f (G) (x • y ∈⊥)}, which is the definition of ( f (G))⊥.
Hence, e ∈ RSR(G) iff f (e) ∈ f (RSR(G)) iff 1 ∈ ( f (G))⊥. ■

Corollary 122. e ∈ RSR(G ◦ H) iff 1 ∈ ( f (G) • f (H))⊥.

Lemma 123. RSR(G ◦ H) = RSR(g⊔ h).

Proof. By the definition of adjunction, g ⊔ h, is R(G ◦ H). The role
R(G ◦ H) is the class of things whose range of subjunctive robustness
is RSR(G ◦ H). So x ∈ g ⊔ h iff RSR(G ◦ H) = RSR(x). Since the range
of subjunctive robustness of a set is the intersection of the ranges of
subjunctive robustness of its members, RSR(g⊔h) is

∩{RSR(x) | x ∈ g⊔h},
which is just RSR(G ◦ H). Therefore, RSR(G ◦ H) = RSR(g⊔ h). ■

Corollary 124. e ∈ RSR(g⊔ h) if and only if 1 ∈ ( f (G) • f (H))⊥.

Lemma 125. In the canonical LL models, for all sentences A such thatJAK = a, RSR(a+) = a− and RSR(a−) = a+.
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Proof. In the canonical LL models, all good implications can be
represented in the form

∪
(a+ ⊔ a−) ⊆ I . So if

∪
(a+ ⊔ x) ⊆ I, then x = a−.

Hence, RSR(a+) = a−. And the analogous reasoning works for RSR(a−) =
a+. ■

Lemma 126. For all phase structures S and the canonical LL models that
are connected by a mapping like f above: If 1 ∈ AS iff e ∈ RSR(a−) and
e ∈ RSR(a+) iff 1 ∈ A⊥

S both hold for the sentences and roles mentioned in
the following statements, then these statements hold (with square brackets
indicating alternatives that also hold, when uniformly applied in a given
statement).
(a) e ∈ RSR(a+[/−] ⊔ b+[/−]) iff 1 ∈ (A[⊥]

S • B[⊥]
S )⊥

(b) e ∈ RSR(a−[/+] ⊓ b−[/+]) iff 1 ∈ (A[⊥]
S ∩ B[⊥]

S )

(c) e ∈ RSR(RSR(a+[/−] ∪ b+[/−])) iff 1 ∈ (A[⊥]
S ∪ B[⊥]

S )⊥⊥

Proof. (ad a) The first fact is immediate from Corollary 124 and
Lemma 125.

(ad b) e ∈ RSR(a− ⊓ b−) iff e ∈ RSR(a−) ∩ RSR(b−) iff 1 ∈ (AS ∩ BS).
And Lemma 125, ensures that e ∈ RSR(a+ ⊓ b+) iff 1 ∈ (A⊥

S ∩ B⊥
S ).

(ad c) e ∈ RSR(RSR(a+ ∪ b+)) iff e ∈ RSR(RSR(a+) ∩ RSR(b+)) iff
e ∈ RSR(a−) ∪ RSR(b−) iff 1 ∈ (AS ∪ BS) iff 1 ∈ (AS ∪ BS)⊥⊥. ■

Proposition 127. In the canonical LL models and for all phase structures,
letting f (a) = AS for all roles and facts, 1 ∈ AS iff e ∈ RSR(a−) and
e ∈ RSR(a+) iff 1 ∈ A⊥

S .

Proof. We argue by induction on the complexity of A. The base case is
trivial because no atomic sentences are linear tautologies, and if A is an
atomic sentence then e ̸∈ RSR(⟨∅, p⟩) in the canonical LL models. And
similarly for A⊥

S and RSR(⟨p, ∅⟩).
For the induction step, let’s start with negation: e ∈ RSR((¬a)−) iff

e ∈ RSR(a+) iff 1 ∈ A⊥
S iff 1 ∈ (¬A)S. Similarly, e ∈ RSR((¬a)+) iff

e ∈ RSR(a−) iff 1 ∈ AS iff 1 ∈ (¬A)⊥S .
Multiplicative conjunction: e ∈ RSR((a⊗b)−) iff e ∈ RSR(RSR(RSR(a−)⊔

RSR(b−))) iff e ∈ RSR(RSR(a+ ⊔ b+)) iff 1 ∈ (AS • BS)⊥⊥ (by
Lemma 126(a)) iff 1 ∈ (A ⊗ B)S. Similarly, e ∈ RSR((a ⊗ b)+) iff e ∈
RSR(a+ ⊔ b+) iff 1 ∈ (AS • BS)⊥ (by Lemma 126(a)) iff 1 ∈ (AS • BS)⊥⊥⊥

iff 1 ∈ (A ⊗ B)⊥S .
Multiplicative disjunction: e ∈ RSR((aOb)−) iff e ∈ RSR(a− ⊔ b−) iff

1 ∈ (A⊥
S • B⊥

S )
⊥ (by Lemma 126(a)) iff 1 ∈ (AOB)S. Similarly e ∈

RSR((aOb)+) iff e ∈ RSR(RSR(RSR(a+) ⊔ RSR(b+))) iff e ∈ RSR(RSR(a− ⊔
b−)) iff 1 ∈ (A⊥

S • B⊥
S )

⊥⊥ (by Lemma 126(a)) iff 1 ∈ (AOB)⊥S .
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Additive conjunction: e ∈ RSR((a&b)−) iff e ∈ RSR(a− ⊓ b−) iff 1 ∈
(AS ∩ BS) (by Lemma 126(b)) iff 1 ∈ (A&B)S. Similarly, e ∈ RSR((a&b)+)
iff e ∈ RSR(RSR(RSR(a+) ∪ RSR(b+))) iff e ∈ RSR(RSR(a− ∪ b−)) iff
1 ∈ (A⊥

S ∪ B⊥
S )

⊥⊥ (by Lemma 126(c)) iff 1 ∈ (¬A ⊕¬B)S iff 1 ∈ (A&B)⊥S .
Additive disjunction: e ∈ RSR((a ⊕ b)−) iff e ∈ RSR(RSR(RSR(a−) ∪

RSR(b−))) iff e ∈ RSR(RSR(a+ ∪ b+)) iff 1 ∈ (AS ∪ BS)⊥⊥ (by
Lemma 126(c)) iff 1 ∈ (A ⊕ B)S. Similarly, e ∈ RSR((a ⊕ b)+) iff e ∈
RSR(a+ ⊓ b+) iff 1 ∈ (A⊥

S ∩ B⊥
S ) (by Lemma 126(b)) iff 1 ∈ (¬A&¬B)S iff

1 ∈ (A ⊕ B)⊥S . ■

Theorem 128. A is a linear tautology if and only if ∼
M

A in all LL

implication-space models. And, hence, Γ |=LL ∆ iff Γ∼
LL

∆.

Proof. By Proposition 127, 1 ∈ AS in all phase structures, which means

that A is a linear tautology, if and only if e ∈ RSR(a−) and, hence, ∼
M

A
in the canonical LL implication-space models. So, A is a linear tautology if

and only if∼
M

A in all LL implication-space models. Let Γ = {γ1, ..., γn}
and ∆ = {δ1, ..., δn}. Then Γ |=LL ∆ iff γ⊥

1 O...Oγ⊥
n Oδ1O...Oδm is a linear

tautology. And the latter holds iff ∼
M

γ⊥
1 O...Oγ⊥

n Oδ1O...Oδm in all LL

implication-space models, which holds just in case Γ∼
LL

∆. ■

5.7.6 Implicational Role Inclusions

We now turn to implicational role inclusions. However, in order to give
the proofs of our results regarding role inclusions, we must first establish
some connections between implication-space models and strong Kleene
valuations.

Definition 129 (Base Models of a Language L). Let L0 be the set of atomic
sentences in L. A base model of the language L is a pair of contents defined
by the implication frame, ⟨L0, I⟩, where the interpretation is such that for
all ϕ ∈ L, JϕK = ⟨R ⟨{ϕ}, ∅⟩ ,R⟨∅, {ϕ}⟩⟩. Basemodels aremonotonic just
in case ∀R1,R2 ∈ R (If

∪
(R1) ⊆ I, then

∪
((R1 ⊔R2)) ⊆ I). And they

are reflexive just in case ∀ JϕK ∈ C ∀R ∈ R
∪
((JϕK+ ⊔ JϕK− ⊔R)) ⊆ I.

Definition 130 (Strong Kleene valuation (model, interpretation)). A strong
Kleene valuation is a function from sentences of a language L to truth-
values in {0, 1

2 , 1} that obeys the strong Kleene truth-tables which are, for
negation and conjunction (with disjunction and conditionals being defined
in the familiar way):



Implication-Space Semantics 267

• v(¬ϕ) = 1 − v(ϕ)
• v(ϕ ∧ ψ) = min(v(ϕ), v(ψ))

Definition 131 (Maximization of an atomic implication). Let ⟨Γ0, ∆0⟩ be
a pair of sets of atomic bearers. Then the maximization of it, written
Mx ⟨Γ0, ∆0⟩, is the pair of bearers ⟨Γ, ∆⟩ = ⟨

∪
Γi,

∪
∆i⟩ for all ⟨Γi, ∆i⟩ in

the series from ⟨Γ0, ∆0⟩ to ⟨Γω, ∆ω⟩ inductively defined as follows:
(0) Γn ⊆ Γn+1 and ∆n ⊆ ∆n+1.
(i) If ϕ ∈ Γn, then ¬ϕ ∈ ∆n+1. And if ϕ ∈ ∆n, then ¬ϕ ∈ Γn+1.
(ii) If ϕ ∈ Γn and ψ ∈ Γn, then ϕ ∧ ψ ∈ Γn+1.
(iii) If ϕ ∈ ∆n or ψ ∈ ∆n, then ϕ ∧ ψ ∈ ∆n+1.

Lemma 132. There is a strong Kleene valuation, v, that partitions all
sentences of language L such that v(γ) = 1 iff γ ∈ Γ, and v(δ) = 0 iff
δ ∈ ∆, and v(θ) = 1

2 iff θ ∈ Θ, if and only if there is a monotonic and
reflexive base model of L, such that I = P(L0)× P(L0) \ {⟨X, Y⟩ | X ⊆
Γ0, Y ⊆ ∆0} and ⟨Γ, ∆⟩ = Mx ⟨Γ0, ∆0⟩.

Proof. Left-to-right: Suppose that there is a strong Kleene valuation that
partitions all sentences such that v(γ) = 1 iff γ ∈ Γ, and v(δ) = 0
iff δ ∈ ∆, and v(θ) = 1

2 iff θ ∈ Θ. Let Γ0 = Γ ∩ L0 be the atomic
sentences in Γ, and let ∆0 = ∆ ∩ L0 be the atomic sentences in ∆. The
base model in which I = P(L0)× P(L0) \ {⟨X, Y⟩ | X ⊆ Γ0, Y ⊆ ∆0} is
the desired model. To see this, note that since Γ0 ∩ ∆0 = ∅, the stipulation
that {⟨X, Y⟩ | X ⊆ Γ0, Y ⊆ ∆0} ̸⊆ I does not conflict with the reflexivity
of the base model. Moreover, suppose that

∪
(R1) ⊆ I. So,

∪
(R1) ∩

{⟨X, Y⟩ | X ⊆ Γ0, Y ⊆ ∆0} = ∅. But then for any R2 the adjunction∪
(R1 ⊔ R2) ∩ {⟨X, Y⟩ | X ⊆ Γ0, Y ⊆ ∆0} = ∅. So,

∪
(R1 ⊔ R2) ⊆ I.

Hence, ∀R1,R2 ∈ R (if
∪
(R1) ⊆ I, then

∪
(R1 ⊔ R2) ⊆ I), and so our

stipulation implies that our base model is monotonic.
To show that ⟨Γ, ∆⟩ = Mx ⟨Γ0, ∆0⟩, we argue by induction on steps

in our construction of Mx ⟨Γ0, ∆0⟩, namely that for all sentences, ϕn, of
complexity n, we have v(ϕn) = 1 iff ϕn ∈ Γn, and v(ϕn) = 0 iff ϕn ∈ ∆n.
All the other sentences of any complexity must then be in Θ. Base case: For
⟨Γ0, ∆0⟩ it is immediate that it is the pair of atomic sentences, i.e., sentences
of complexity 0, from Γ and ∆. So that, v(ϕ0) = 1 iff ϕ0 ∈ Γ0, and v(ϕ0) = 0
iff ϕ0 ∈ ∆0.

For the induction step, take a sentence, ϕ, of complexity, n + 1. If ϕn+1
is either in Γ or in ∆, then it is added at step n + 1 of the construction of
Mx ⟨Γ0, ∆0⟩. And ϕ is either a negation or a conjunction. Suppose ϕ = ¬ψ.
Now, ¬ψ ∈ Γn+1 iff ψ ∈ ∆n, which happens, by our induction hypothesis
iff v(ψ) = 0, which by the truth-tables happens iff v(¬ψ) = 1. Similarly,
¬ψ ∈ ∆n+1 iff ψ ∈ Γn, which happens, by our induction hypothesis iff
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v(ψ) = 1, which by the truth-tables happens iff v(¬ψ) = 0. Next, suppose
that ϕ = ψ ∧ χ. Now, ψ ∧ χ ∈ Γn+1 iff ψ ∈ Γn and χ ∈ Γn, which happens,
by our induction hypothesis iff v(ψ) = 1 and v(χ) = 1, which by the
truth-tables happens iff v(ψ ∧ χ) = 1. Similarly, ψ ∧ χ ∈ ∆n+1 iff ψ ∈ ∆n
or χ ∈ ∆n, which happens, by our induction hypothesis iff v(ψ) = 0 or
v(χ) = 0, which by the truth-tables happens iff v(ψ ∧ χ) = 0. So, by
induction, ⟨Γ, ∆⟩ = Mx ⟨Γ0, ∆0⟩.

Right-to-left: Suppose that there is a monotonic and reflexive base model
of L, such that I = P(L0) × P(L0) \ {⟨X, Y⟩ | X ⊆ Γ0, Y ⊆ ∆0} and
⟨Γ, ∆⟩ = Mx ⟨Γ0, ∆0⟩. Take the valuation such that v(γ0) = 1 iff γ0 ∈ Γ0,
and v(δ0) = 0 iff δ0 ∈ ∆0, and v(θ0) =

1
2 iff θ0 ∈ L0 but θ0 ̸∈ Γ0 ∪ ∆0. Then

we use the strong Kleene truth-tables to determine the values of all logically
complex sentences. The result is a strong Kleene valuation, v, that partitions
all sentences of language L such that v(γ) = 1 iff γ ∈ Γ, and v(δ) = 0
iff δ ∈ ∆, and v(θ) = 1

2 iff θ ∈ Θ. This can be shown by an induction
on the steps in the construction of Mx ⟨Γ0, ∆0⟩, which is analogous to the
induction for the left-to-right direction. ■

Lemma 133. For every set I ⊆ P(L0) × P(L0), there is a monotonic
and reflexive base model of L, such that I = P(L0) × P(L0) \ {⟨X, Y⟩ |
X ⊆ Γ0, Y ⊆ ∆0} and ⟨Γ, ∆⟩ = Mx ⟨Γ0, ∆0⟩ and I = {⟨X, Y⟩ | X ⊆
Γ, Y ⊆ ∆} if and only if there is a strong Kleene valuation, v, that is an ST
counterexample to all and only the inferences in I .

Proof. Left-to-right: For all candidate implications ⟨X, Y⟩ ∈ I , we know
that X ⊆ Γ and Y ⊆ ∆. By Lemma132, there is a strong Kleene valuation
such that v(γ) = 1 iff γ ∈ Γ, and v(δ) = 0 iff δ ∈ ∆, and v(θ) = 1

2 iff
θ ∈ Θ. Hence, for all ⟨X, Y⟩ ∈ I , γ ∈ X(v(γ) = 1) and ∀δ ∈ Y(v(δ) = 0).
Hence, v is an ST counterexample to everything in I .

Right-to-left: Suppose that there is a strong Kleene valuation, v, that is
an ST counterexample to all and only the inferences in I . By Lemma132,
there is a monotonic and reflexive base model of L, such that candidate
implication I = P(L0) × P(L0) \ {⟨X, Y⟩ | X ⊆ Γ0, Y ⊆ ∆0} and
Mx(⟨Γ0, ∆0⟩) = ⟨Γ, ∆⟩ such that Γ is the exact set of sentences with
value 1 in v and ∆ is the exact set of the sentences with value 0 in v.
Hence, the inferences to which v provides ST counterexamples are all
and only the inferences, X � Y, such that X ⊆ Γ and Y ⊆ ∆. That is,
I = {⟨X, Y⟩ | X ⊆ Γ, Y ⊆ ∆}. ■

According to the definition in the main text, a conic implication-space
model, M, is a monotonic and reflexive implication-space model in which

there is a pair ⟨Γ, ∆⟩ and X ≁
M

Y iff ⟨X, Y⟩ ∈ P(Γ)×P(∆).
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Proposition 134. There is a monotonic and reflexive base model of L,
such that I = P(L0) × P(L0) \ {⟨X, Y⟩ | X ⊆ Γ0, Y ⊆ ∆0} and
⟨Γ, ∆⟩ = Mx ⟨Γ0, ∆0⟩ if and only if there is a conic implication-space model
that is a counterexample to all and only the candidate implications in the
set {⟨X, Y⟩ | X ⊆ Γ, Y ⊆ ∆}.

Proof. Left-to-right: Suppose that there is a monotonic and reflexive base
model of L, such that I = P(L0) × P(L0) \ {⟨X, Y⟩ | X ⊆ Γ0, Y ⊆
∆0} and ⟨Γ, ∆⟩ = Mx ⟨Γ0, ∆0⟩. We know that ⟨Γ0, ∆0⟩ ̸∈ I. But by
the construction of Mx ⟨Γ0, ∆0⟩, if ⟨Γi, ∆i⟩ ̸∈ I, then ⟨Γi+1, ∆i+1⟩ ̸∈ I.
Therefore, ⟨Γ, ∆⟩ ̸∈ I. And by monotonicity, this implies that none of the
implications in the set {⟨X, Y⟩ | X ⊆ Γ, Y ⊆ ∆} are in I. Conversely,
suppose that ⟨U, W⟩ ̸∈ I. If the sentences in U and W are atomic, then
⟨U, W⟩ ∈ {⟨X, Y⟩ | X ⊆ Γ0, Y ⊆ ∆0}. And if they are not atomic, we
can reduce them to atomic sequents by applying the procedure by which
we constructed Mx ⟨Γ0, ∆0⟩ in reverse. The resulting sequents must be in
{⟨X, Y⟩ | X ⊆ Γ0, Y ⊆ ∆0}. And from the construction of Mx ⟨Γ0, ∆0⟩
we can then see that ⟨U, W⟩ ∈ {⟨X, Y⟩ | X ⊆ Γ, Y ⊆ ∆}. So our model
is a counterexample to all and only the candidate implications in the set
{⟨X, Y⟩ | X ⊆ Γ, Y ⊆ ∆}.

Right-to-left: Suppose that there is a monotonic and reflexive
implication-space model that is a counterexample to all and only the
candidate implications in the set {⟨X, Y⟩ | X ⊆ Γ, Y ⊆ ∆}. We can
now construct a model, M′, by taking the implication frame defined by
the set of atomic sentences as bearers and the consequence relation of
our implication-space model over these atomic sentences as the set of
good implications, and it is easy to see that the consequence relation of
this base model is a monotonic and reflexive base model of L, such that
IM′ = P(L0) × P(L0) \ {⟨X, Y⟩ | X ⊆ Γ0, Y ⊆ ∆0} and ⟨Γ, ∆⟩ =
Mx ⟨Γ0, ∆0⟩. ■

Theorem 135. There is a strong Kleenemodel that is an ST counterexample
to all and only the candidate implications in a set K if and only if there is
a conic implication-space model that is a counterexample to all and only
the candidate implications in a set K .

Proof. Left-to-right: There is a strong Kleene model, v, that is an ST
counterexample to all and only the candidate implications in a set K
iff for all and only the implications ⟨P, C⟩ ∈ K we have v(p) = 1
for all p ∈ P, and v(c) = 0 for all c ∈ C. Let Θ be

∪
P for all

⟨P, C⟩ ∈ K , and let Λ be
∪

C for all ⟨P, C⟩ ∈ K . The counterexample
in question is one that partitions all sentences of language L such that
v(θ) = 1 iff θ ∈ Θ, and v(λ) = 0 iff λ ∈ Λ. By Lemma 132, there
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is a strong Kleene valuation, v, that partitions all sentences of language
L such that v(θ) = 1 iff θ ∈ Θ, and v(λ) = 0 iff λ ∈ Λ, if and
only if there is a monotonic and reflexive base model of L, such that
candidate implication I = P(L0) × P(L0) \ {⟨X, Y⟩ | X ⊆ Γ0, Y ⊆ ∆0}
and ⟨Γ, ∆⟩ = Mx ⟨Γ0, ∆0⟩. And from Lemma 133 we know that the bad
candidate implications in such a model are K = {⟨X, Y⟩ | X ⊆ Γ, Y ⊆ ∆}.
Hence, there is a conic implication-space model that is a counterexample
to all and only the candidate implications in a set K .

Right-to-left: Suppose that there is a conic implication-space model that
is a counterexample to all and only the candidate implications in a set K .
The set of all bad candidate implications is K = {⟨X, Y⟩ | X ⊆ Γ, Y ⊆ ∆}
for some ⟨Γ, ∆⟩. By Proposition 134, there is such a conic implication-space
model iff there is a monotonic and reflexive base model of L, such that I =
P(L0) × P(L0) \ {⟨X, Y⟩ | X ⊆ Γ0, Y ⊆ ∆0} and ⟨Γ, ∆⟩ = Mx ⟨Γ0, ∆0⟩.
And by Lemma 132, this happens just in case there is a strong Kleene model
that is an ST counterexample to all and only the candidate implications in
a set K . ■

Definition 136 (Local metainferential validity). A metainference from the
set of sequents X to the set of sequents Y is valid in the local sense if and only
if, for every model (valuation) (in the relevant class of models), if the model
is a counterexample to all of the sequents in Y, then it is a counterexample
to at least one of the sequents in X.

Fact 137. The following are implications of well known facts about the
relations between ST, LP, K3, and TS (see Dicher and Paoli, 2019; Barrio
et al., 2015; Cobreros et al., 2020a; Ré et al., 2021):

Γ |=LP ∆ iff the metainference from �∧
Γ to �∆ is locally valid in the

strong Kleene formulation of ST.
Γ |=K3 ∆ iff the metainference from

∨
∆� to Γ� is locally valid in the

strong Kleene formulation of ST.
Γ |=ST ∆ iff the metainference from A � A to Γ � ∆ is locally valid in the

strong Kleene formulation of ST.
Γ |=TS ∆ iff the metainference from {�∧

Γ,
∨

∆�} to ∅ � ∅ is locally
valid in the strong Kleene formulation of ST.

Proof. One way to see why these facts hold is the following: A strong
Kleene counterexample to Γ |=LP ∆ is such that ∀γ ∈ Γ (v(γ) ̸= 0) and
∀δ ∈ ∆ (v(δ) = 0). But a strong Kleene model is an ST counterexample to�∧

Γ iff ∃γ ∈ Γ (v(γ) = 0). So the models such that ∀γ ∈ Γ (v(γ) ̸= 0)
are those that could be counterexamples to the metainference or the LP
inference, if we considered just Γ. A counterexample to �∆ is a model
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such that ∀δ ∈ ∆ (v(δ) = 0). So a model is a counterexample to the
metainference just in case it is a counterexample to Γ |=LP ∆.

Similarly, a strong Kleene counterexample to Γ |=K3 ∆ is such that
∀γ ∈ Γ (v(γ) = 1) and ∀δ ∈ ∆ (v(δ) ̸= 1). But a strong Kleene model
is an ST counterexample to

∨
∆� iff ∃δ ∈ ∆ (v(δ) = 1). So the models

such that ∀δ ∈ ∆ (v(δ) ̸= 1) are those that could be counterexamples
to the metainference or the K3 inference, if we considered just ∆. A
counterexample to Γ� is a model such that ∀γ ∈ Γ (v(γ) = 1). So a model
is a counterexample to the metainference just in case it is a counterexample
to Γ |=K3 ∆.

Of course, Γ |=ST ∆ holds iff there is no ST counterexample to Γ � ∆.
Since there isn’t any countermodel to the inference A � A in the strong
Kleene formulation of ST, this holds just in case the metainference from
A � A to Γ � ∆ is locally valid in the strong Kleene formulation of ST.

A strong Kleene counterexample to Γ |=TS ∆ is a model in which ∀γ ∈ Γ
(v(γ) ̸= 0) and ∀δ ∈ ∆ (v(δ) ̸= 1). So Γ |=TS ∆ iff every model is such
that ∃γ ∈ Γ (v(γ) = 0) or ∃δ ∈ ∆ (v(δ) = 1). That is, Γ |=TS ∆ iff
every model is an ST counterexample to �∧

Γ or to
∨

∆�. Since all strong
Kleene models are counterexamples to ∅ � ∅, this holds just in case the
metainference from {�∧

Γ,
∨

∆�} to ∅ � ∅ is locally valid in the strong
Kleene formulation of ST. ■

Lemma 138. A metainference from {Θ1 � Λ1, ..., Θn � Λn} to {Γ � ∆}
is locally valid in the strong Kleene formulation of ST just in case
R⟨Θ1, Λ1⟩ , ...,R⟨Θn, Λn⟩ ⪯ R ⟨Γ, ∆⟩ in the conic implication-space
models.

Proof. Left-to-right: Suppose that themetainference from {Θ1 � Λ1, ..., Θn �
Λn} to {Γ � ∆} is locally valid in the strong Kleene formulation of ST.
By Theorem 135 above, there is a one-to-one mapping between conic
implication-space models and STmodels that preserves counterexamples in
both directions. Hence, every conic implication-space model that is a coun-
terexample to Γ � ∆ is a counterexample to at least one of the implications
in {Θ1 � Λ1, ..., Θn � Λn}. So, in all conic implication-space models, if e ̸∈
RSR(R⟨Γ, ∆⟩), then e ̸∈ RSR(R⟨Θ1, Λ1⟩) or ... or e ̸∈ RSR(R⟨Θn, Λn⟩),
i.e., e ̸∈ RSR(R⟨Θ1, Λ1⟩ ⊓ ... ⊓ R ⟨Θn, Λn⟩). In other words, it holds just
in case: in all models, if e ∈ RSR(R⟨Θ1, Λ1⟩ ⊓ ... ⊓ R ⟨Θn, Λn⟩), then
e ∈ RSR(R⟨Γ, ∆⟩). Since we can vary I in any way that is consistent
with the model being conic, this holds just in case, in all conic mod-
els, if x ∈ RSR(R⟨Θ1, Λ1⟩ ⊓ ... ⊓ R ⟨Θn, Λn⟩), then x ∈ RSR(R⟨Γ, ∆⟩),
that is, RSR(

n
⊓

i=1
R⟨Θi, Λi⟩) ⊆ RSR(

m
⊔

j=k
R⟨Γ, ∆⟩). By definition, this is

R⟨Θ1, Λ1⟩ , ...,R⟨Θn, Λn⟩ ⪯ R ⟨Γ, ∆⟩ in the conic models.
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Right-to-left: Suppose that R⟨Θ1, Λ1⟩ , ...,R⟨Θn, Λn⟩ ⪯ R ⟨Γ, ∆⟩ in
the conic implication-space models. So, in all conic implication-space
models, if e ̸∈ RSR(R⟨Γ, ∆⟩), then e ̸∈ RSR(R⟨Θ1, Λ1⟩) or ... or e ̸∈
RSR(R⟨Θn, Λn⟩). By Theorem 135 above, it follows that the metainference
from {Θ1 � Λ1, ..., Θn � Λn} to {Γ � ∆} is locally valid in the strong Kleene
formulation of ST. ■

Proposition 139. Suppose that the only constraint on implication-space
models is that they be conic, and let JΓK = G and G+ = {g+ | g ∈ G} and
G− = {g− | g ∈ G} and analogously for J∆K = D. Then:

Γ |=LP ∆ if and only if (
∧
G)− ⪯ D−.

Γ |=K3 ∆ if and only if (
∨
D)+ ⪯ G+.

Γ |=ST ∆ if and only if ⋆ ⪯ G+, D−.
Γ |=TS ∆ if and only if (

∧
G)−, (

∨
D)+ ⪯ e.

Proof. This follows from Fact 137 and Lemma 138. ■

We now turn to the relation between implication-space semantics and
work related to analytic metaphysics, in particular Correia’s logic of factual
equivalence and the notions of essence, grounding, and generalized identity.

Definition 140 (Essential truth-maker models). An essential truth-maker
model of a truth-maker model M is a truth-maker model M′ that is like
M in its consequence relations but in which every truth-maker of A is a
truth-maker of B if, for all ⟨Γ, ∆⟩, if Γ, A TM ∆, then Γ, B TM ∆, and every
falsity-maker of A is a falsity-maker of B if, for all ⟨Γ, ∆⟩, if Γ TM B, ∆,
then Γ TM A, ∆.

Essential truth-maker models, in effect, are the result of ignoring all the
differences between states in a truth-maker model that do not matter for
the possibility or impossibility of states.

Lemma 141. There is a truth-maker model such that TM = X in that model
if and only if there is an essential truth-maker model such that TM = X in
that essential model.

Proof. The right-to-left direction is immediate. For the left-to-right
direction, take a truth-maker model M and add the following stipulation
to it: for any state w that is a fusion of truth-makers for each sentence in
a set Γ and of falsity-makers for each sentence in a set ∆, for all sets of
states T and S, if (if ∀t ∈ T(t ⋓ w ̸∈ S3), then ∀s ∈ S(s ⋓ w ̸∈ S3)), then
S ⊆ T. This obviously does not change the consequence relation of M.
And the resulting model is an essential model of M. To see this, suppose
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that, for all ⟨Γ, ∆⟩, if Γ, A TM ∆, then Γ, B TM ∆. Take any state w and let
⟨Γ, ∆⟩ be such that w is a fusion of truth-makers for every sentence in Γ and
falsity-makers for every sentence in ∆. Since if Γ, A TM ∆, then Γ, B TM ∆,

it follows that if ∀t ∈ |A|+ (t ⋓ w ̸∈ S3), then ∀s ∈ |B|+ (s ⋓ w ̸∈ S3).
And since w was arbitrary our stipulation implies that |B|+ ⊆ |A|+.
For the condition regarding falsity-makers, suppose that, for all ⟨Γ, ∆⟩, if
Γ TM B, ∆, then Γ TM A, ∆. Then, for any w, if ∀t ∈ |A|+ (t ⋓ w ̸∈ S3),
then ∀s ∈ |B|+ (s ⋓ w ̸∈ S3). So |B|− ⊆ |A|−. ■

This means that the nonessential truth-maker models are, in one sense,
superfluous: Truth-maker theory can codify a consequence relation without
the nonessential models just in case it can codify the consequence relation
with the nonessential models. That is why we call these truth-maker models
nonessential and the others essential truth-maker models.

Lemma 142. Let JAK = a and JBK = b.We have a+ ⪯ b+ in all implication-
space models in a set m, if and only if, in all the essential truth-maker
models of truth-maker models whose consequence relation coincides with
a consequence relation of a model in m, every truth-maker of A is a truth-
maker of B. And a− ⪯ b− in all implication-space models in a set m, if and
only if every falsity-maker of A is a falsity-maker of B in the corresponding
truth-maker models.

Proof. Left-to-right: We know from Theorem 83 that for every
implication-space model, there is a truth-maker model with the same con-
sequence relation, and vice versa. Suppose that a+ ⪯ b+ in all implication-
space models in m, that is, RSR(a+) ⊆ RSR(b+). So, in all these models,
for all ⟨Γ, ∆⟩, if Γ, A ∼ ∆, then Γ, B ∼ ∆. Hence, in all the corresponding
truth-maker models, for all ⟨Γ, ∆⟩, if Γ, A TM ∆, then Γ, B TM ∆. In an
essential truth-maker model, this ensures that every truth-maker of A is a
truth-maker of B. Suppose that a− ⪯ b− in all implication-space models
in m, that is, RSR(a−) ⊆ RSR(b−). So, in all these models, for all ⟨Γ, ∆⟩,
if Γ ∼ A, ∆, then Γ ∼ B, ∆. Hence, in all the corresponding truth-maker
models, for all ⟨Γ, ∆⟩, if Γ TM A, ∆, then Γ TM B, ∆. In an essential truth-
maker model, this ensures that every falsity-maker of A is a falsity-maker
of B in the corresponding truth-maker models.

Suppose that in all the essential truth-maker models for the models m,
every truth-maker of A is a truth-maker of B. Hence, in all these models,
for all ⟨Γ, ∆⟩, if Γ, A TM ∆, then Γ, B TM ∆. So, in all the implication-
space models, for all ⟨Γ, ∆⟩, if Γ, A ∼ ∆, then Γ, B ∼ ∆. Therefore,
a+ ⪯ b+. And analogous reasoning shows that if every falsity-maker of A
is a falsity-maker of B in the corresponding essential truth-maker models,
then a− ⪯ b− in all implication-space models in a set m. ■
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Proposition 143. If the only constraint on models is that they obey
the semantic clauses for the implication-space semantic of NMMS
(Definition 70), then Correia’s logic and his dual system are related to
implicational roles as follows. For all JAK = a and JBK = b:
⊢c A ≈ B if and only if, in all models, a+ ⪯⪰ b+, and so a+ = b+.
⊢dc A ≈ B if and only if, in all models, a− ⪯⪰ b−, and so a− = b−.

Proof. Correia uses, in effect, the same truth-maker models that we use for
NMMS.26 Moreover, Correia (2016) has shown that ⊢c A ≈ B holds just in
case A and B have the same truth-makers in all truth-maker models (and so
merely in virtue of logical form), and it is easy to see that ⊢dc A ≈ B holds
just in case A and B have the same falsity-makers in all truth-maker models
(see Hlobil, 2022a). By Lemma 141, something holds in all truth-maker
models iff it holds in all essential truth-maker models. And by Lemma 142,
A and B have the same truth-makers in all essential truth-maker models
iff a+ ⪯⪰ b+. And A and B have the same falsity-makers in all essential
truth-maker models iff a− ⪯⪰ b−. ■

Fact 144. Factual Essence: Its being the case that A is what it is for it to
be the case that B in full, in virtue of truth-functional logical form (Correia
and Skiles, 2019, 651), if and only if, for JAK = a and JBK = b, we have
a+ = b+ in all implication-space models. And its being the case that A is
in part what it is for it to be the case that B, in virtue of truth-functional
logical form (Correia and Skiles, 2019, 651), if and only if , for JAK = a andJBK = b, there is some c+ such that a+ ⊔ c+ = b+ in all implication-space
models.

Proof. Correia and Skiles (2019, 651) use Correia’s logic to suggest that: its
being the case that A is what it is for it to be the case that B in full, in virtue
of truth-functional logical form, if and only if, ⊢c A ≈ B in virtue of truth-
functional logical form. We know from Proposition 143 that ⊢c A ≈ B
holds in virtue of truth-functional logical form just in case, for JAK = a

and JBK = b, we have a+ = b+ in all implication-space models.
Correia and Skiles (2019, 651) also use Correia’s logic to suggest that:

Its being the case that A is in part what it is for it to be the case that B iff:
there is some C such that its being the case that B is for it to be the case that
both A and C. Using Correia’s logic, this holds in virtue of truth-functional
logical form just in case ⊢c B ≈ A∧C. It follows from Proposition 143 that
⊢c B ≈ A ∧ C holds just in case, for JAK = a and JBK = b and JCK = c, we
have a+ ⊔ c+ = b+ in all implication-space models. So, its being the case
that A is in part what it is for it to be the case that B holds, in virtue of
truth-functional logical form, iff there is some c+ such that a+ ⊔ c+ = b+

in all implication-space models. ■
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Fact 145. Strict Full Grounding: Its being the case that A1, ..., An makes
it the case that B, in virtue of truth-functional logical form (Correia and
Skiles, 2019, 655), if and only if, in all implication-space models, forJAiK = ai and JBK = b, (i) for some JCK = c, we have (a+1 ⊔ ... ⊔ a+n ) ⊓
c+ ⊓ (a+1 ⊔ ... ⊔ a+n ⊔ c+) ⪯⪰ b+ and (ii) ∀1 ≤ i ≤ n there are no JDK = d

and JEK = e such that (b+ ⊔ d
+) ⊓ e+ ⊓ (b+ ⊔ d

+ ⊔ e+) ⪯⪰ a+i .

Proof. Correia and Skiles (2019, 655) suggest, using Correia’s logic, that
its being the case that A1, ..., An makes it the case that B (in the sense of
strict full grounding), in virtue of truth-functional logical form, iff (i) for
some C, we have ⊢c (A1 ∧ ... ∧ An) ∨ C ≈ B and (ii) neither is there a
D such that ∃E(⊢c (B ∧ D) ∨ E ≈ A1) nor ... nor is there a D such that
∃E(⊢c (B ∧ D) ∨ E ≈ An). It follows from Proposition 143 that condition
(i) holds iff for some C, with JCK = c, we have(a+1 ⊔ ... ⊔ a+n ) ⊓ c+ ⊓
(a+1 ⊔ ...⊔ a+n ⊔ c+) ⪯⪰ b+ in all implication-space models. And condition
(ii) holds iff ∀1 ≤ i ≤ n there are no JDK = d and JEK = e such that
(b+ ⊔ d

+) ⊓ e+ ⊓ (b+ ⊔ d
+ ⊔ e+) ⪯⪰ a+i . ■

Fact 146. A sentence of the form “For it to be the case that A is for it to
be the case that B” is true in virtue of logical form, in the sense of Elgin
(2021, sec 4), if and only if, for JAK = a and JBK = b, we have a = b, and
so a ⋑⋐ b, in all implication-space models.

Proof. Elgin holds that two sentences are exactly equivalent iff they have
the same truth-makers and the same falsity-makers. He illustrated his
suggestion for generalized identity thus: “‘To be a person is to be bound by
the categorical imperative’ holds just in case the verifiers and falsifiers of
the claim that someone is a person are identical to the verifiers and falsifiers
of the claim that she is bound by the categorical imperative” (Elgin, 2021,
9). If we think of sentences as 0-place predicates, this yields the claim that
a sentence of the form “For it to be the case that A is for it to be the
case that B” holds iff A and B have the same truth-makers and the same
falsity-makers. And it holds in virtue of logical form if it holds in all truth-
maker models. Now, if A and B have the same truth-makers and the same
falsity-makers in all truth-maker models, then this holds in all essential
truth-maker models. Hence, a = b, and so a ⋑⋐ b, in all implication space
models, for JAK = a and JBK = b. ■

The facts stated in the section on nonlogical role inclusions are all
immediate implications of the correspondences between sequent rules and
implication-space semantics, which we highlight in various places in the
chapter, especially in the subsection on the implication-space semantics of
NMMS and in the subsection on linear logic.
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Notes

1 Implication-space semantics is closely related to Girard’s (1987) phase-space
semantics for linear logic. The formalism that we present in this chapter is
inspired by and similar to the one developed in Daniel Kaplan’s (2022) PhD
dissertation. However, our definitions of implicational roles and adjunction
are different from Kaplan’s definitions. As a result our semantic clauses
for the logical vocabulary are also different. Unlike Kaplan, we define
implicational roles by abstraction, using an equivalence relation among
candidate implications.

2 Note that we do not ignore incompatibilities here. Rather, as in previous
chapters, we encode implications and incompatibilities in a single reason
relation, namely by using the empty set as a conclusion set in a good implication
to encode the mutual incompatibility of the premises. For ease of exposition
we sometimes call the combined relation an implication relation; but it should
be kept in mind that this relation also includes all information about material
incompatibilities.

3 Recall from Chapter Three that not just good implications but also mere
candidate implications have ranges of subjunctive robustness, that is, sets of
additions that yield good implications. Hence, ⟨{ϕ}, ∅⟩ need not be a good
implication to have a range of subjunctive robustness.

4 Wewill allow ourselves to write RSR ⟨X, Y⟩ for RSR(⟨X, Y⟩), wherever this seems
appropriate to avoid clutter.

5 We will allow ourselves to write R⟨X, Y⟩ for R(⟨X, Y⟩), wherever this seems
appropriate to avoid clutter.

6 The case of the role of an arbitrary candidate implication ⟨Θ, Λ⟩ is analogous.
Again, the role of a candidate implication is the set of sets of candidate
implications that have the same range of subjunctive robustness: the set of sets of
candidate implications such that, say, {⟨Γ, ∆⟩} is in that set if and only if parallel
additions of premises or conclusions to ⟨Γ, ∆⟩ and to ⟨Θ, Λ⟩ always either both
yield good implications or both yield implications that are not good. Again, the
idea is that an implicational role is an equivalence class, where the relevant
equivalence relation is the relation of having the same range of subjunctive
robustness. And we can also express this by saying that if ⟨Γ, ∆⟩ and ⟨Θ, Λ⟩
have the same implicational role, then they can be substituted for each other
salva consequentia.

7 Cantor’s Theorem ensures that, in every implication space, the cardinality of
the bearers is always smaller than the cardinality of the potential conceptual
contents in that implication space. After all, every set of candidate implications
can serve as a range of subjunctive robustness that can define a premisory or
conclusory role. So |P(S)|, which is |P(P(B)×P(B))|, is an upper bound on
the number of premisory and conclusory roles. However, Cantor’s Theorem
immediately implies that |B| < |P(B)×P(B)| < |P(S)|. Thus, the upper
bounds on the number of conceptual contents defined by an implication frame is
larger than the number of bearers in the implication frame. This holds only for
the potential number of conceptual contents given by a set of bearers because
there can be implication frames that do not define as many conceptual contents
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as they have bearers. The trivial consequence relation over a collection of
bearers, for example, defines only one single conceptual content.

8 If we wanted to think about conceptual contents as independent from particular
implication frames, we could take another step of abstraction and say that
conceptual contents defined by different implication spaces are equivalent
if there is an entailment preserving bijection between the contents of the
implication frames, perhaps as follows: Given two implication frames ⟨B1, I1⟩
and ⟨B2, I2⟩ and their contents C1 and C2, then the contents a ∈ C1 and b ∈ C2
are equivalent contents if and only if, there is a bijection, f , between subsets of
C1 and C2 such that P ∼ C holds in ⟨B1, I1⟩ just in case f (P) ∼ f (C) holds in
⟨B2, I2⟩ and f (a) = b.
With an equivalence relation among contents of different implication frames

in hand, we could now define a notion of “absolute contents” as equivalence
classes of contents with respect to this equivalence relation. However, we do
not pursue this line of thought any further here. We do not pursue this thought
because several issues arise at this point that we wish to set aside. For example,
if there is more than one entailment preserving bijection between contents, then
there are contents that are equivalent to two distinct contents. This happens if
there are permutations of contents that preserve entailment. That might seem
problematic. The issue is related to the questionwhether there are always several
equally correct translations between any two languages (as Quine thought)
and how we may be able to fix representation relations up to uniqueness,
which we briefly touched upon in the previous chapter. In particular, when
we consider bearers of implicational roles that are sentences of a language or
vehicles of thought, the idea of Covariant Tracking might again be useful here.
We may require, for example, that the bijection continues to hold under parallel
additions of content bearers to both implication frames and that it continues to
hold after parallel rational adjustments of the language in light of new evidence.
Moreover, one might worry that our definition of equivalence of contents is not
only too weak but also too strong because one might want to say that, for
example, sentences in two languages have the same content although one of
the two languages can express contents that the other language cannot express.
Hence, one might choose to require a bijection between the contents of one
implication frame and a subset of the contents of another implication frame.
However, if the contents of the first implication frame are few and simple, then
this relation might hold in cases in which we would intuitively deny that the
contents are equivalent. Hence, the issue is a delicate one. We here set such
difficult issues to one side again, as these issues do not seem specific to our
account. Corresponding issues seem to arise in different ways for many theories
of conceptual content and reason relations. And any tools that other theories
might use to address them seem, in principle, available in our setting.

9 While languages have countably many sentences, there might be uncountably
many worldly propositions. This is one respect in which the correspondence
between truth-maker theory and implication-space semantics is even stronger
than the correspondence between NMMS and implication-space semantics.
However, we won’t pursue such cardinality related issues any further here.
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10 One might wonder how it can be that JϕKM = |ϕ|M
′
given that these

objects can seem very different. Notice, however, that JϕKM = R(ϕ) =

⟨R ⟨{ϕ}, ∅⟩ ,R⟨∅, {ϕ}⟩⟩, which is a pair of sets. And |ϕ|M
′
=

⟨
|ϕ|+ , |ϕ|−

⟩
,

which is also a pair of sets. So what the identity mentioned in this definition

requires is that we let ⟨R ⟨{ϕ}, ∅⟩ ,R⟨∅, {ϕ}⟩⟩ be
⟨
|ϕ|+ , |ϕ|−

⟩
.

11 Of course, the sentences interpreted by truth-maker models are also spaces
of bearers of implicational roles. But it is more illuminating here to focus on
worldly propositions.

12 The difference between contractive and non-contractive reason relations
corresponds to the difference between monoids whose operation is idempotent
and those whose operation is not idempotent.

13 Thinking in proof-theoretic terms, relaxing this constraint leads to so-called
consecution calculi, in which we can encounter, for instance, tree structures
of premises and conclusions. Such calculi are useful, for instance, in relevance
logics and modal logics; but we will continue to ignore them here.

14 Daniel Kaplan (2022), who constructed the original implication-space
semantics, in fact developed it by generalizing Girard’s phase-space semantics
because he was interested in reason relations that are nontransitive,
nonmonotonic, and noncontractive.

15 In this and the next two paragraphs, we ignore some complications about the
distinction between bearers and their roles. Taking them into account would
make the explanation unnecessarily complicated and merely obscure what
matters here.

16 To see why context-mixing Cut—given Containment—would preclude this,
suppose that, for any X and Y, if X, A ∼ Y, then X, B ∼ Y. By Containment,
A ∼ A and, hence, B ∼ A. Now suppose that X ∼ B, Y. By context-mixing
Cut, it follows from the last two sequents that X ∼ A, Y. So, if context-
mixing Cut and Containment hold, then substitutability as premises implies the
converse substitutability as conclusions.

17 Daniel Kaplan has first suggested such a notion in our context, in a series of
working-papers presented to the ROLE group. He connected it to three-valued
logics, but he did not develop the idea in the context of implication-space
semantics, as we do here.

18 The principles below concern how structural principles for the underlying
implications show up in role inclusion relations. Regarding structural principles
for role inclusion itself, Reflexivity holds because one can replace any role for
itself.
An analogue of the rule of Weakening for the left side holds for role

inclusion: If R1, ...,Rn ⪯ Rk, ...,Rm, then R0,R1, ...,Rn ⪯ Rk, ...,Rm. This

holds because RSR(
n
⊓

i=1
Ri ⊓ R0) ⊆ RSR(

n
⊓

i=1
Ri), which is true because

RSR(
n
⊓

i=1
Ri ⊓ R0) is RSR(

n
⊓

i=1
Ri) ∩ RSR(R0), which is obviously a subset

of RSR(
n
⊓

i=1
Ri). An analogue of the Weakening rule on the right side holds if

the underlying implication relation is monotonic. That is, if the implicational
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relation is monotonic, then if R1, ...,Rn ⪯ Rk, ...,Rm, then R1, ...,Rn ⪯
Rk, ...,Rm,Rm+1.
The following analogue of Cut holds for implicational role inclusion: if
R1, ...,Rn ⪯ R0 and R0,R1, ...,Rn ⪯ Rk, ...,Rm, then R1, ...,Rn ⪯
Rk, ...,Rm. For, the antecedent means that RSR(

n
⊓

i=1
Ri) ⊆ RSR(R0) and

RSR(R0⊓
n
⊓

i=1
Ri) ⊆ RSR(

m
⊔

j=k
Rj). But, RSR(R0⊓

n
⊓

i=1
Ri) = RSR(R0) ∩ RSR(

n
⊓

i=1

Ri). Hence, RSR(R0) ∩ RSR(
n
⊓

i=1
Ri) = RSR(

n
⊓

i=1
Ri). So RSR(R0⊓

n
⊓

i=1
Ri)

= RSR(
n
⊓

i=1
Ri) and, thus, RSR(

n
⊓

i=1
Ri) ⊆ RSR(

m
⊔

j=k
Rj). Therefore, R1, ...,Rn ⪯

Rk, ...,Rm.
19 From now on we use these semantic clauses; we assume Contraction by working

with sets of bearers, and use set theoretic notions in their usual way again (for
sets and not for multi-sets).

20 If we allowed ourselves to use open sentences and call their contents “concepts,”
we could, at this point, note that, plausibly, the concept of “_ is a dog”
includes the concept of “_ is a mammal,” thus vindicating the old idea that
inclusions or containment relations among concepts often correspond to the
inverse inclusions among the extensions of these concepts. Although working
out this tantalizing idea goes beyond the scope of this book, having such an idea
in mind can be helpful below when we turn to logics that have been suggested
as logics for content.

21 These ascriptions would have to be qualified and explained in many respects
to do justice to the positions of Priest or Kripke. We are here merely interested
in the most straightforward and simplistic interpretation, as this works well
enough for our current purposes.

22 This is related to work by Fitting (2021) on strict-tolerant logic and bilattices.
One key difference, however, is that we do not use a lattice ordering to define
consequence in implication-space models.

23 The connections that we point out in this subsection are closely related to
the connections between these logics and admissible sequent rules (see Hlobil,
2022a).

24 Elgin’s system is formulated in terms of predicates, but we can treat sentences
as 0-place predicates. So this difference doesn’t matter for our purposes. If we
wanted the generality of Elgin’s theory in our setting, we would need to include
sub-sentential structure.

25 We formulate everything as double-line rules, which cuts down on clutter. What
is new, relative to Tanter, are the rules G/FR, RFji, and LFji for the Species-
Genus relation. These are variations on Tanter’s CR and PR rules. We reject
Tanter’s CR-rule because in the absence of right-weakening the stipulation that
if it follows that something belongs to a particular species, then it follows
that it belongs to the genus is not equivalent with the stipulation that if it
follows that something belongs to some species or other, then it follows that
it belongs to the genus. We want to codify the latter and not the former. We
reject Tanter’s PR-rule because it is a formulation of the thought that something
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belongs to a species if and only if it belongs to the genus and to none of the
other species of that genus, which we can better express by saying that Fjν
should behave inferentially like Gν ∧ ¬F1ν ∧ ... ∧ ¬Fiν, which is the same as
Gν∧¬(F1ν∨ ...∨ Fiν), which is equivalent to ¬(¬Gν∨ (F1ν∨ ...∨ Fiν)), which
is equivalent to¬(Gν → (F1ν∨ ...∨ Fiν)). And it is the latter version that is most
easily seen in the sequent rules.

26 In particular, Correia uses the inclusive clauses and does not require bilateral
propositions (our worldly propositions) to be convex, as Fine sometimes does.




